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FOREWORD

Mathematics HL (Option): Discrete Mathematics has been written as a companion book to the
Mathematics HL (Core) textbook. Together, they aim to provide students and teachers with
appropriate coverage of the two-year Mathematics HL Course, to be first examined in 2014.

This book covers all sub-topics set out in Mathematics HL Option Topic 10 and Further Mathematics
HL Topic 6, Discrete Mathematics.

The aim of this topic is to introduce students to the basic concepts, techniques and main results in
number theory and graph theory.

Detailed explanations and key facts are highlighted throughout the text. Each sub-topic contains
numerous Worked Examples, highlighting each step necessary to reach the answer for that example.

Theory of Knowledge is a core requirement in the International Baccalaureate Diploma Programme,
whereby students are encouraged to think critically and challenge the assumptions of knowledge.
Discussion topics for Theory of Knowledge have been included on pages 140 and 160. These aim to
help students discover and express their views on knowledge issues.

The accompanying student CD includes a PDF of the full text and access to specially designed
software and printable pages.

Graphics calculator instructions for Casio fx-9860G Plus, Casio fx-CG20, TI-84 Plus and TI- spire

are available from icons in the book.

Fully worked solutions are provided at the back of the text, however students are encouraged to
attempt each question before referring to the solution.

It is not our intention to define the course. Teachers are encouraged to use other resources. We have
developed this book independently of the International Baccalaureate Organization (IBO) in
consultation with experienced teachers of IB Mathematics. The text is not endorsed by the IBO.

In this changing world of mathematics education, we believe that the contextual approach shown in
this book, with associated use of technology, will enhance the students understanding, knowledge
and appreciation of mathematics and its universal applications.

n

We welcome your feedback.

Email:

Web:

info@haesemathematics.com.au

www.haesemathematics.com.au

CTQ PJB CS

RCH PMH

ACKNOWLEDGEMENTS

The authors and publishers would like to thank all those teachers who offered advice and
encouragement on this book.
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USING THE INTERACTIVE STUDENT CD

The interactive CD is ideal for independent study.

Students can revisit concepts taught in class and undertake their own revision
and practice. The CD also has the text of the book, allowing students to leave
the textbook at school and keep the CD at home.

By clicking on the relevant icon, a range of interactive features can be
accessed:

�

�

�

Graphics calculator instructions for the ,
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SYMBOLS AND NOTATION USED IN THIS BOOK

6

¼ is approximately equal to

> is greater than

> is greater than or equal to

< is less than

6 is less than or equal to

f......g the set of all elements ......

fx1, x2, ....g the set with elements x1, x2, ....

2 is an element of

=2 is not an element of

N the set of all natural numbers f0, 1, 2, 3, ....g
Z the set of integers f0, §1, §2, §3, ....g
Z + the set of positive integers f1, 2, 3, ....g
R the set of real numbers

[ union

\ intersection

Z m the set of equivalence classes f0, 1, 2, ...., m ¡ 1g of integers modulo m

) implies that

)Á does not imply that

, if and only if

f(x) the image of x under the function f

nP
i=1

ui u1 + u2 + u3 + :::: + un

a j b a divides b

gcd(a, b) the greatest common divisor of a and b

lcm(a, b) the least common multiple of a and b

a ´ b(modm) a is congruent to b modulo m

sin, cos, tan the circular functions

arcsin, arccos, arctan the inverse circular functions

cis µ cos µ + i sin µ

n! n £ (n ¡ 1) £ (n ¡ 2) £ :::: £ 3 £ 2 £ 1¡
n
r

¢ n!

r!(n ¡ r)!
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7

(ak::::a2a1a0) digital form of the integer ak10k + :::: + a2102 + a110 + a0

(ak::::a2a1a0)n digital form of the integer akn
k + :::: + a2n

2 + a1n + a0

Pn a proposition defined for some n

fn the nth term of the Fibonacci sequence

deg(A) the degree of vertex A

G0 the complement of graph G

Kn the complete graph on n vertices

Km, n the complete bipartite graph with m vertices in one set and n in the other

Cn the cycle graph on n vertices

Wn the wheel graph on n vertices

deg(F ) the degree of face F

wt(T ) the weight of tree T

wt(VW) the weight of edge VW
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10 NUMBER THEORY (Chapter 1)

INTRODUCTION TO NUMBER THEORY

You might think that integers are the simplest of mathematical objects. However, their properties lead

to some very deep and satisfying mathematics. The study of the properties of integers is called number

theory.

In this course we will study:

² techniques of proof

² applications of algorithms, which are methods of mathematical reasoning and solution

² a development of the number system with modular arithmetic

² the use and proof of important theorems.

SETS OF INTEGERS

The set of all integers is Z = f0, §1, §2, §3, §4, §5, ....g.

The set of all positive integers is Z + = f1, 2, 3, 4, 5, ....g.

The set of natural numbers is N = f0, 1, 2, 3, ....g = Z + [ f0g.

NOTATION

2 reads is in or is an element of or is a member of

) reads implies

, reads if and only if

a j b reads a divides b or a is a factor of b fa j b ) b = na for some n 2 Z g.

gcd(a, b) reads the greatest common divisor of a and b, which is the highest common factor

of a and b

lcm(a, b) reads the least common multiple of a and b.

PRIME AND COMPOSITE INTEGERS

A positive integer p is prime if p > 1 and the only factors of p are 1 and p itself.

If a positive integer m, m > 1, is not prime, it is called composite.

The integer 1 is neither prime nor composite.

For example:

² 2, 3, 5, 7, 11 are prime numbers.

² 1, 4, 6, 9 are not prime numbers. In particular, 4 = 2 £ 2, 6 = 2 £ 3, and 9 = 3 £ 3 are

examples of composite numbers.

(ak::::a2a1a0) is the digital form of the integer ak10k + :::: + a2102 + a110 + a0

(ak::::a2a1a0)n is the digital form of the integer akn
k + :::: + a2n

2 + a1n + a0

If the digits are all known then we leave off the brackets.

For example, 101 1012 = 1 £ 25 + 0 £ 24 + 1 £ 23 + 1 £ 22 + 0 £ 21 + 1 £ 20.

magentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 IB HL OPT

Discrete Mathematics

Y:\HAESE\IB_HL_OPT-DM\IB_HL_OPT-DM_01\010IB_HL_OPT-DM_01.cdr Tuesday, 21 January 2014 9:26:12 AM BRIAN



OPENING PROBLEMS

NUMBER THEORY (Chapter 1) 11

In this course we will address problems like the ones in the following exercise. Do not be discouraged

if you cannot solve some of these problems yet.

1 Consider the integers of the form 2n ¡ 1, n 2 Z +, n > 2. Are all integers of this form prime

numbers?

2 Consider the integers of the form 2p ¡1, where p is prime. Are all integers of this form prime

numbers?

3 Find a list of:

a five consecutive non-prime integers b six consecutive non-prime integers.

4 Prove that it is not possible to find integers x and y such that 6x + 3y = 83.

5 Prove that a perfect square always:

a has an odd number of factors

b is the product of an even number of primes (counting repetitions).

6 Without using division, determine whether 14 975 028 526 824 is divisible by 36.

7 Show that the equation 2x + 4y = 62 has an infinite number of solutions such that x and y
are integers.

8 Are there infinitely many prime numbers? Can you prove your assertion?

9 A rational number is a number which can be written in the form
p

q
where p and q are integers

and q 6= 0. Prove that
p

2 is not rational.

Hint: Start by assuming that
p

2 is rational. You may find 5b above useful.

10 Is 5041 a prime number?

AXIOMS

An axiom is a foundation statement which is stipulated to be true for the purpose of developing further

theory.

For example, we define the inequalities:

a > b , a ¡ b > 0

a < b , b ¡ a > 0

The order axiom is:

If a > 0 and b > 0 then a + b > 0 and ab > 0.

Using the order axiom, the following results can be proven:

² If a < b and b < c, then a < c. (transitivity)

² If a < b then a + c < b + c and a ¡ c < b ¡ c.

² If a < b and c > 0, then ac < bc.

² If a < b and c < 0, then ac > bc.

These inequalities are

necessary to establish

.order properties

IB HL OPT
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12 NUMBER THEORY (Chapter 1)

Proof: a < b ) b ¡ a > 0

and c < 0 ) ¡c > 0

) ¡c(b ¡ a) > 0 forder axiomg
) ¡bc + ac > 0

) ac > bc

AXIOMS FOR INTEGERS

² If a, b 2 Z then a + b, a ¡ b, and ab 2 Z .

² If a 2 Z then there does not exist x 2 Z such that a < x < a + 1.

² If a, b 2 Z and ab = 1, then either a = b = 1 or a = b = ¡1.

² If a, b 2 Z then either a < b, a = b, or a > b.

WELL ORDERED PRINCIPLE (WOP)

A set S is well ordered , every non-empty subset of S contains a least element.

Z + = f1, 2, 3, ....g is well ordered since any subset of Z + will contain a distinct element of lowest

value.

Z = f...., ¡2, ¡1, 0, 1, 2, 3, ....g is not well ordered, since for example the set Z itself does not have a

least element.

R is not well ordered, since any open subset of R does not contain a least element.

N = f0, 1, 2, ....g is well ordered.
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NUMBER THEORY (Chapter 1) 13

The Well Ordered Principle (WOP) for Z + is that every non-empty subset of Z + contains a least (lowest

value) element.

This property of the set of positive integers is necessary for the validity of proof by induction.

From the HL Core course, the Principle of Mathematical Induction (PMI) in its weak form is:

Suppose Pn is a proposition defined for all n in Z +. If

² P1 is true and

² the truth of Pk ) the truth of Pk+1 (called the inductive step)

then Pn is true for all n 2 Z +.

Theorem 1:

The proof by the Principle of Mathematical Induction is a valid method of mathematical proof.

Proof (by contradiction):

Suppose that P1 is true and the truth of Pk ) the truth of Pk+1, but the conclusion Pn is not true

for every n 2 Z +

) there exists at least one positive integer for which Pn is false

) the set S of positive integers for which Pn is false, is non-empty

) S has a least element, k say, where Pk is false. fWOPg .... (¤)

But P1 is true, so k > 1

) k ¡ 1 > 0

) 0 < k ¡ 1 < k faxiomsg
Now since k ¡ 1 < k, k ¡ 1 is not in S fas k is the least element of Sg.

This implies that Pk¡1 is true ffrom ¤g.

But Pk¡1 true ) Pk true, hence Pk is true which contradicts ¤.

So, our supposition is false.

Mathematical induction is used in many number theoretic proofs, especially for establishing divisibility,

and in later work on recurrence relations.

MATHEMATICAL INDUCTIONA

For more information,

consult the on

.

Appendix

mathematical proof

IB HL OPT
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14 NUMBER THEORY (Chapter 1)

Use the Principle of Mathematical Induction to prove that 10n+1 + 3 £ 10n + 5 is divisible by 9

for all n 2 Z +.

Proof: (By the Principle of Mathematical Induction)

Pn is that “10n+1 + 3 £ 10n + 5 is divisible by 9” for all n 2 Z +.

(1) If n = 1, 102 + 3 £ 101 + 5 = 135 = 15 £ 9 which is divisible by 9
) P1 is true.

(2) If Pk is true, then 10k+1 + 3 £ 10k + 5 = 9A for some A 2 Z .... ( ¤ )

) 10[k+1]+1 + 3 £ 10[k+1] + 5

= 10 £ 10k+1 + 30 £ 10k + 5

= 10(9A ¡ 3 £ 10k ¡ 5) + 30 £ 10k + 5 fusing ¤ g
= 90A ¡ 30 £ 10k ¡ 50 + 30 £ 10k + 5

= 90A ¡ 45

= 9(10A ¡ 5) where 10A ¡ 5 2 Z since A 2 Z

) 10[k+1]+1 + 3 £ 10[k+1] + 5 is divisible by 9

Thus P1 is true, and Pk+1 is true whenever Pk is true.

) Pn is true for all n 2 Z +.

Use the Principle of Mathematical Induction to prove that 5n > 8n2 ¡ 4n + 1 for all n 2 Z +.

Proof: (By the Principle of Mathematical Induction)

Pn is that “5n > 8n2 ¡ 4n + 1” for all n 2 Z +.

(1) If n = 1, LHS = 51 = 5 and RHS = 8 £ 1 ¡ 4 £ 1 + 1 = 5

) P1 is true.

(2) If Pk is true, then 5k > 8k2 ¡ 4k + 1 .... (¤)

Now 5[k+1] ¡ 8[k + 1]2 + 4[k + 1] ¡ 1

= 5 £ 5k ¡ 8(k2 + 2k + 1) + 4k + 4 ¡ 1

= 5 £ 5k ¡ 8k2 ¡ 16k ¡ 8 + 4k + 4 ¡ 1

= 5 £ 5k ¡ 8k2 ¡ 12k ¡ 5

> 5(8k2 ¡ 4k + 1) ¡ 8k2 ¡ 12k ¡ 5 fusing ¤ g
> 32k2 ¡ 32k

> 32k(k ¡ 1)

> 0 since k > 1

) 5[k+1] > 8[k + 1]2 ¡ 4[k + 1] + 1

Thus P1 is true, and Pk+1 is true whenever Pk is true.

) Pn is true for all n 2 Z +.

Example 2

Example 1
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P

r k

P P P P

r

1 2 3 k

being true for all

means that

, , , ....,

must all be true.

6

NUMBER THEORY (Chapter 1) 15

EXERCISE 1A.1

1 Use the Principle of Mathematical Induction to prove that:

a 3n > 7n for n > 3, n 2 Z + b nn > n! for n > 2, n 2 Z +

c 3n < n! for n > n 2 Z +.

2 Use the Principle of Mathematical Induction to prove that:

a n3 ¡ 4n is divisible by 3 for all n > 3, n 2 Z +

b 5n+1 + 2(3n) + 1 is divisible by 8 for all n 2 Z +

c 73 j (8n+2 + 92n+1) for all n 2 Z +.

3 The nth repunit is the integer consisting of n “1”s.

For example, the third repunit is the number 111.

a Prove that the nth repunit is
10n ¡ 1

9
for all n 2 Z +.

b Ali claimed that all repunits other than the second, are composite. Can you prove or disprove

Ali’s claim?

c Tara made a weaker statement. She claimed that if a repunit is prime, then it must have a prime

number of digits. Can you prove or disprove Tara’s claim?

d Joachim made a stronger claim than Tara. He said that all repunits with a prime number of

digits must themselves be prime. Can you prove or disprove Joachim’s claim?

4

STRONG INDUCTION (THE SECOND FORM OF MATHEMATICAL

INDUCTION)

Strong induction is so-called because its inductive step appears to require

more conditions than in the first (weak) form. It states that:

If P1 is true, and if Pr being true for all r 6 k ) Pk+1 is true,

then Pn is true for all n 2 Z +.

This form of inductive proof is in fact logically equivalent to the weak

form!

The proof of the Unique Prime Factorisation Theorem depends on it.

THE FIBONACCI SEQUENCE

An area of Mathematics where proof by Strong Induction is used is that of recurrence relations.

An example is the Fibonacci sequence of numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, .... .

Leonardo of Pisa (Fibonacci) (c. 1180 - 1228) introduced the sequence to Europe along with the Arabic

notation for numerals, in his book “Liber Abaci”. It is posed as the rabbits problem which you could

source on the internet or in the library.

7,

Use the Principle of Mathematical Induction to prove that 3n > 5n2 ¡ 6n for all n > 3, n 2 Z +.
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16 NUMBER THEORY (Chapter 1)

Many results about the Fibonacci sequence have been proven, but others are still to be proved. The

magazine “The Fibonacci Quarterly” deals solely with newly discovered properties of the sequence. A

number of proofs require strong induction for proof. Many sites could be visited including:

http://mathworld.wolfram.com/FibonacciNumber.html

The Fibonacci sequence can be defined as:

f1 = 1, f2 = 1, and fn+2 = fn+1 + fn for all n > 1.

This is an example of a recurrence relation as we specify the initial value(s) and then give a rule for

generating all subsequent terms.

A sequence is defined recursively by an+1 =
a 2
n

an¡1
for all

integers n > 2 with a1 = 1 and a2 = 2.

a Find a3, a4, a5, and a6.

b Hence, postulate a closed form solution for an.

c Prove your postulate is true using Mathematical Induction.

a a3 =
a 2
2

a1
=

22

1
= 4

a4 =
a 2
3

a2
=

42

2
= 8

a5 =
a 2
4

a3
=

82

4
= 16

a6 =
a 2
5

a4
=

162

8
= 32

b a1 = 1 = 20

a2 = 2 = 21

a3 = 4 = 22

a4 = 8 = 23

a5 = 16 = 24

a6 = 32 = 25

We postulate that an = 2n¡1.

c Proof: (By the Principle of Mathematical Induction (strong form).)

Pn is that “if a1 = 1, a2 = 2, and an+1 =
a 2
n

an¡1
for all integers n > 2, then

an = 2n¡1”.

(1) If n = 1, 21¡1 = 20 = 1 = a1 ) P1 is true.

(2) Assume that ar = 2r¡1 is true for all r 6 k

) ar = 2r¡1 for r = 1, 2, 3, 4, ...., k .... ( ¤ )

Now ak+1 =
a 2
k

ak¡1
=

(2k¡1)2

2k¡2
fusing ¤ g

=
22k¡2

2k¡2

= 2k

= 2(k+1)¡1 which has the required form.

Thus P1 is true, and the assumed result for r = 1, 2, 3, 4, ...., k ) the same result for

r = k + 1.

) Pn is true for all n 2 Z +.

Example 3

A solution

is a solution given as an

explicit function of .

closed form

n
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NUMBER THEORY (Chapter 1) 17

EXERCISE 1A.2

1 If a sequence is defined by a1 = 1, a2 = 2, and an+2 = an+1 + an, prove that an 6
¡
5
3

¢n
for

all n 2 Z +.

2 If b1 = b2 = 1 and bn = 2bn¡1 + bn¡2 for all n > prove that bn is odd for n 2 Z +.

The remaining questions all involve the Fibonacci sequence, fn.

3 Evaluate
nP

k=1

fk for n = 1, 2, 3, 4, 5, 6, and 7. Hence express
nP

k=1

fk in terms of another

Fibonacci number. Prove your postulate true by induction.

4 We can use inequalities to bound the Fibonacci numbers and tell us something about how they grow

‘exponentially’.

a Prove that
¡
3
2

¢n¡2
< fn 6 2n¡2 for all n 2 Z +, n > 3.

b Prove that

µ
1 +

p
5

2

¶n¡2

< fn for all n 2 Z +. This leads to a closed form for fn known

as Binet’s formula.

5 Rearranging fn+2 = fn+1 + fn to fn = fn+2 ¡ fn+1 enables us to prove question 3 directly.

Show how this can be done.

6 Postulate and prove a result for
nP

k=1

f2k¡1 in terms of other Fibonacci numbers.

7 Postulate and prove a result for
nP

k=1

f 2
k in terms of other Fibonacci numbers by expressing the

result of this sum as a product of two factors, each of which can be expressed in terms of a Fibonacci

number.

8 Prove that fn+1 £ fn¡1 ¡ (fn)2 = (¡1)n for all n 2 Z +, n > 2.

9 Postulate and prove a result for
nP

k=1

f2k in terms of other Fibonacci numbers.

10

11 Prove that fn £ fn¡1 = (fn)2 ¡ (fn¡1)
2 + (¡1)n for all n > 2.

Hence show that consecutive Fibonacci numbers have no common factor besides 1.

12 a Prove by induction that an =
1p
5

µ
1 +

p
5

2

¶n

¡ 1p
5

µ
1¡p

5

2

¶n

, n 2 Z +, is a closed form

solution to the Fibonacci recurrence relation.

b Which form of induction was required in a?

13 Prove that f4n is a multiple of 3 for all n 2 Z +.

14

a Find f0, f5, and f10.

b Prove that every Fibonacci number f5t is a multiple of 5.

3,

Postulate and prove a result for
2n¡1P
k=1

(fk £ fk+1) in terms of the square of another Fibonacci

number.

An alternative definition of the Fibonacci sequence includes an initial term f0 = 0. In this case

we have f0 = 0, f1 = 1, fn+1 = fn + fn¡1 for all n > 1.
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18 NUMBER THEORY (Chapter 1)

We have seen that the Fibonacci sequence is an example of a recurrence relation, where we specify an

initial term, and generate subsequent terms using a rule which involves the previous terms.

In this section we examine methods to solve problems involving a recursive or iterative calculation. These

occur in certain counting problems, and in problems involving population growth, compound interest,

and debt repayment.

In the HL Core course we defined:

A sequence fang is a list of numbers an, n = 0, 1, 2, .... called terms, in a definite order.

Depending on the theory being studied, the first term of a sequence may be denoted a0 or a1, which

means the terms of the sequence are indexed either by N or Z +. This is a matter of convenience, and

we choose N or Z + depending on the context of the problem.

In this section we mostly use N , and indeed we assume n 2 N unless otherwise specified.

For example:

² Consider the sequence 0!, 1!, 2!, 3!, .... defined by the closed form solution an = n!, n 2 N .

Notice that a0 = 0! = 1

a1 = 1! = 1 = 1 £ a0
a2 = 2! = 2 = 2 £ a1
a3 = 3! = 6 = 3 £ a2
a4 =

...

4! = 24 = 4 £ a3

an = nan¡1 for all n 2 N , n > 1.

This is a recursive definition which gives us:

an¡1 = (n ¡ 1)an¡2, for n > 2

an¡2 = (n ¡ 2)an¡3, for n > 3

an¡3 =
...

(n ¡ 3)an¡4, for n > 4

an¡k =
...

(n ¡ k)an¡k¡1, for n > k > 1.

and so on, by recursion.

The relation an = nan¡1, n 2 N , n > 1, together with the initial condition a0 = 1 defines

the sequence uniquely, since an = nan¡1 for n > 1

= n[(n ¡ 1)an¡2] fby recursiong
=
...

n(n ¡ 1)[(n ¡ 2)an¡3] fby recursiong

= n(n ¡ 1)(n ¡ 2) :::: £ 2 £ 1 £ a0
= n! fsince a0 = 1g

The form a0 = 1, an = nan¡1, n > 1 is called a recurrence relation for this sequence.

RECURRENCE RELATIONSB
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NUMBER THEORY (Chapter 1) 19

² The Fibonacci sequence can be defined by the recurrence relation a0 = 0, a1 = 1,

an = an¡1 + an¡2, n > 2, which gives the values 0, 1, 1, 2, 3, 5, 8, 13, 21, .... .

In Exercise 1A.2 question 12, strong induction was used to prove that

an =
1p
5

µ
1 +

p
5

2

¶n

¡ 1p
5

µ
1¡p

5

2

¶n

, n 2 N

is the closed form solution for the Fibonacci sequence. The two definitions, closed form and

recursive, are both useful.

From the recursive definition it is easy to observe that all terms in the Fibonacci sequence are

integers; this is not obvious from the closed form solution. However, if we wish to calculate an

arbitrary term in the Fibonacci sequence, for example a100, then the closed form solution is more

useful than the recursive definition.

A recurrence relation for the sequence fang, n 2 N , is an equation which relates the term an to

some or all of the preceding terms in the sequence, together with initial values for the first few terms.

For a sequence fang, n 2 N , a recurrence relation of degree (or order) r for the sequence is

a relationship which defines the term an as a function of an¡r and possibly also an¡1, an¡2, ....,

an¡r+1, and n. Hence an = f(an¡1, an¡2, ...., an¡r)+g(n), where f and g are functions, together

with initial values for the first r terms a0, a1, ...., ar¡1, of the sequence.

² If g(n) = 0 for all n 2 N then the recurrence relation is homogeneous; otherwise it is

inhomogeneous.

² If f(an¡1, an¡2, ...., an¡r) = h1(n)an¡1 + h2(n)an¡2 + :::: + hr(n)an¡r for some functions

h1, h2, ...., hr of n, then the recurrence relation is linear, otherwise it is non-linear.

² If a recurrence relation is linear and each function hi(n), i = 1, ...., r, is a constant, then the

recurrence relation is said to have constant coefficients.

For example:

² The Fibonacci sequence defined by a0 = 0, a1 = 1, an = an¡1+an¡2, n > 2 is a second-degree

linear homogeneous recurrence relation with constant coefficients.

² a0 = ¡2, an = 5an¡1, n > 1 is a first-degree linear homogeneous recurrence relation with

constant coefficients.

The corresponding sequence is: a0 = ¡2

a1 = 5 £ a0 = 5 £ (¡2) = ¡10

a2 = 5 £ a1 = 5 £ (5 £ ¡2) = 52 £ (¡2) = ¡50

a3 =
...

5 £ a2 = 5 £ (52 £ ¡2) = 53 £ (¡2) = ¡250

This is a geometric sequence with closed form solution an = 5n £ ¡2, n 2 N .

² a0 = 10, an = an¡1 ¡ 7, n > 1, is a first-degree linear inhomogeneous recurrence relation with

constant coefficients.

The corresponding sequence is: a0 = 10

a1 = a0 ¡ 7 = 10 ¡ 7 = 3

a2 = a1 ¡ 7 = (10 ¡ 7) ¡ 7 = 10 ¡ 2 £ 7 = ¡4

a3 =
...

a2 ¡ 7 = (10 ¡ 2 £ 7) ¡ 7 = 10 ¡ 3 £ 7 = ¡11

This is an arithmetic sequence with closed form solution an = 10 ¡ 7n, n 2 N .
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20 NUMBER THEORY (Chapter 1)

² a0 = 1, a1 = 5, a2 = ¡2, an = a 2
n¡1 + an¡2an¡3, n > 3, is a third-degree non-linear

homogeneous recurrence relation.

The corresponding sequence is: a3 = a 2
2 + a1a0 = (¡2)2 + 5 £ 1 = 9

a4 = a 2
3 + a2a1 = 92 + (¡2) £ 5 = 71

a5 =
...

a 2
4 + a3a2 = (71)2 + 9 £ (¡2) = 5023

² a0 = 1, an = an¡1 + n, n > 1 is a first-degree linear inhomogeneous recurrence relation with

constant coefficients.

The corresponding sequence is: 1, 2, 4, 7, 11, 16, .... .

² a0 = 0, a 2
n = 1 + an¡1, n > 1 is a first-degree non-linear inhomogeneous recurrence relation.

This recurrence relation does not define a unique sequence, since at least two sequences can be

found to satisfy the recurrence relation:

0, ¡1, 0, ¡1, 0, ¡1, 0, ¡1, .... and 0, 1,
p

2,
p

1 +
p

2,

q
1 +

p
1 +

p
2, .... .

This last example shows that not all recurrence relations define a unique sequence.

We state without proof the following result:

Any linear homogeneous recurrence relation of degree r with constant coefficients

an = c1an¡1 + c2an¡2 + :::: + cran¡r (where cr 6= 0 since the recurrence relation is of degree r),

together with initial values for the first r terms a0, a1, a2, ...., ar¡1, defines a unique solution

sequence fang, n 2 N .

For each sequence below:

i Find the first four terms of the sequence described by the given recurrence relation, and

conjecture a closed form solution.

ii Use induction to prove your conjecture.

iii Hence calculate a100.

a a0 = 2, an = an¡1 + 3, n > 1 b a0 = 1, an =
³

n

n+ 1

´
an¡1, n > 1

a i This is a first-degree linear inhomogeneous recurrence relation with constant coefficients.

a0 = 2

a1 = a0 + 3 = 2 + 3 = 5

a2 = a1 + 3 = (2 + 3) + 3 = 2 + 2 £ 3 = 8

a3 = a2 + 3 = (2 + 2 £ 3) + 3 = 2 + 3 £ 3 = 11

Conjecture: an = 2 + 3n, n 2 N

ii For n = 0, a0 = 2 + 3 £ 0 = 2 X

If ak = 2 + 3k

then ak+1 = ak + 3 = (2 + 3k) + 3 = 2 + 3(k + 1)

which is of the required form.

) by the principle of (weak) induction, an = 2 + 3n for all n 2 N .

iii a100 = 2 + 3 £ 100 = 302

Example 4
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NUMBER THEORY (Chapter 1) 21

b i This is a first-order linear homogeneous recurrence relation.

a0 = 1

a1 =
1

(1 + 1)
a0 = 1

2 £ 1 = 1
2

a2 =
2

(2 + 1)
a1 = 2

3 £ 1
2 = 1

3

a3 =
3

(3 + 1)
a2 = 3

4 £ 1
3 = 1

4

Conjecture: an =
1

n+ 1
, n 2 N .

ii For n = 0, a0 =
1

0 + 1
= 1 X

If ak =
1

k + 1

then ak+1 =
k + 1

(k + 1) + 1
£ ak =

(k + 1)

(k + 2)
£ 1

(k + 1)
=

1

k + 2
=

1

(k + 1) + 1

which is of the required form.

) by the principle of (weak) induction, an =
1

n+ 1
for all n 2 N .

iii a100 =
1

100 + 1
=

1

101

EXERCISE 1B.1

1 For each sequence below:

i Find the first five terms of each sequence described by the given recurrence relation, and

conjecture a closed form solution.

ii Use induction to prove your conjecture.

a an = an¡1 + 2, n > 1, a0 = 12 b an = 3an¡1, n > 1, a0 = 10

c an+1 = 3an, n > 1, a1 = 10 d an = 2an¡1 + 10, n > 1, a0 = 1

e an = an¡1 + k, n > 1, a0 = 0,

f an = kan¡1, n 2 Z +, a0 = 1,

g an = nan¡1, n 2 Z +, n > 2, a1 = 1 h xn+1 = xn + (2n + 3), n 2 Z +, x0 = 1

2 Express each sequence as a recurrence relation and conjecture its closed form solution:

a 5, 7, 9, 11, .... b 5, 6, 9, 14, 21, 30, .... c 5, 10, 20, 40, 80, ....

d 2, 8, 24, 64, 160, .... e 1, 1, 2, 3, 5, 8, 13, ....

3 For each sequence below:

i Find the first four terms of the sequence described by the recurrence relation, and conjecture

a closed form solution.

ii Use induction to prove your conjecture.

iii Find a100.

a an = an¡1 + 2n ¡ 1, n 2 Z +, a0 = 0 b an = an¡1 + 2n + 1, n > 1, a0 = 1

c an = an¡1 + n, n 2 Z +, a0 = 0 d an = an¡1 + n + 1, n 2 Z +, a0 = 1

e an = an¡1 + n3, n 2 Z +, a0 = 0 Hint: Compare to the sequence in c.

f an = (n + 1)an¡1, n > 1, a0 = 1

For first-degree recurrence relations

we can use weak induction to prove

a closed form solution.

where k is a non-zero constant

where k is a non-zero constant
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22 NUMBER THEORY (Chapter 1)

Consider the recursive definition an = 2an¡1 ¡ an¡2, n > 2.

a Why is this an improperly defined recurrence relation?

b Show that an = 3n, n 2 N is a closed form solution.

c Show that an = 5, n 2 N is a closed form solution.

a Initial values for a0 and a1 are required to complete the definition of the recurrence relation.

b If an = 3n, n 2 N then for n > 2, an¡2 = 3(n ¡ 2)

and an¡1 = 3(n ¡ 1).

) 2an¡1 ¡ an¡2 = 2 £ 3(n ¡ 1) ¡ 3(n ¡ 2)

= 6n ¡ 6 ¡ 3n + 6

= 3n

= an

) an = 3n, for n 2 N is a closed form solution.

c If an = 5 for all n 2 N , then for n > 2, 2an¡1 ¡ an¡2 = 2 £ 5 ¡ 5 = 5 = an.

Thus an = 5, n 2 N , is a closed form solution.

7 Consider the recursive definition an = an¡1 + an¡2 ¡ an¡3, n > 3.

a Is this a properly defined recurrence relation? Explain your answer.

b Show that an = c, n 2 N , c 2 R is a closed form solution.

c Show that an = cn + d, n 2 N , c, d 2 R is a closed form solution.

Example 5

4 Consider the recurrence relation a0 = c, an = ran¡1, n 2 Z + where r, c 2 Z are constants.

a Calculate the first four terms of the sequence.

b Hence state a closed form solution for the geometric sequence an, n 2 N .

5 Consider the recurrence relation a0 = c, an = an¡1 + b, n 2 Z + where c, b 2 Z are constants.

a Calculate the first four terms of the sequence.

b Hence state a closed form solution for the arithmetic sequence an, n 2 N .

6 Consider the recurrence relation a0 = c, an = ran¡1 + b, n 2 Z + where r, b, c 2 Z are

constants and r 6= 1.

a Calculate the first five terms of the sequence.

b Derive the closed form solution an = rnc + b
³
rn ¡ 1

r ¡ 1

´
, n 2 N .
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NUMBER THEORY (Chapter 1) 23

Use the identity
nP

i=1

i =
n(n+ 1)

2
to find a closed form solution for the recurrence relation:

a0 = c (a constant), an = an¡1 + n, n > 1.

a0 = c

a1 = a0 + 1 = c + 1

a2 = a1 + 2 = (c + 1) + 2 = c + 1 + 2

a3 = a2 + 3 = (c + 1 + 2) + 3 = c + 1 + 2 + 3

a4 =
...

a3 + 4 = (c + 1 + 2 + 3) + 4 = c + 1 + 2 + 3 + 4

an = c + 1 + 2 + 3 + :::: + (n ¡ 1) + n

) an = c +
nP

i=1

i = c +
n(n+ 1)

2
, n 2 N

8 Use the identity
nP

i=1

i2 =
n(n+ 1)(2n+ 1)

6
to find a closed form solution for the recurrence relation:

FIRST-DEGREE LINEAR RECURRENCE RELATIONS

A first-degree linear recurrence relation has the form

a0 = c, an = h(n)an¡1 + g(n), n > 1

where a0 = c is a constant and h(n), g(n) are functions of n, n 2 N .

In the previous exercise, you should have found the following results:

Special cases
Recurrence relation

for n 2 N
Closed form solution

for n 2 N

g(n) = 0
homogeneous

h(n) = r
constant coefficients

a0 = c, an = ran¡1, n > 1
Geometric sequence

an = rnc

g(n) = b, constant.

inhomogeneous

h(n) = 1
constant coefficient of 1

a0 = c, an = an¡1 + b, n > 1
Arithmetic sequence

an = c + nb

g(n) = b, constant.

inhomogeneous

h(n) = r, r 6= 1
constant coefficient r 6= 1

a0 = c, an = ran¡1 + b, n > 1
an = rnc + b

³
rn ¡ 1

r ¡ 1

´
where r 6= 1.

g(n) a function of n
inhomogeneous

h(n) = 1
a0 = c, an = an¡1 + g(n)

Can be found for

certain forms of g(n).

Example 6

a0 = c (a constant), an = an¡1 + n2, n 2 Z +.
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24 NUMBER THEORY (Chapter 1)

MODELLING WITH FIRST-DEGREE LINEAR RECURRENCE RELATIONS

Problems involving simple interest, compound interest, and debt repayment can often be formulated in

terms of first-degree linear recurrence relations.

SINGLE DEPOSIT COMPOUNDED INVESTMENT

Suppose E45 000 is invested at 7:5% p.a. with interest compounded at the end of each quarter.

No withdrawals are made.

a Write a recurrence relation for an, the value of the investment after n compounding periods.

b Write down the closed form solution for an, n 2 N .

c Find the value of the investment after 3 years.

d What initial amount should be invested under the same conditions to obtain a value of E80 000
after 21

2 years?

a an =
³
1 +

0:075

4

´
an¡1, n > 1

) an = (1:018 75)an¡1, n > 1

with a0 = 45 000

b an = 1:018 75an¡1

= 1:018 75(1:018 75an¡2) fby recursiong
= (1:018 75)2an¡2

= (1:018 75)2(1:018 75an¡3) fby recursiong
=
...

(1:018 75)3an¡3

= (1:018 75)na0

) an = (1:018 75)n £ 45 000, n 2 N

c A period of 3 years corresponds to

3 £ 4 = 12 compounding periods.

Now a12 = (1:018 75)12 £ 45 000

¼ E56 237:24

) the investment is worth ¼ E56 237:24 .

d 21
2 years corresponds to

21
2 £ 4 = 10 compounding periods.

If 80 000 = (1:018 75)10a0
then a0 ¼ 66 437:6

) at least E66 438 must be invested.

CONSTANT AND REGULAR DEPOSIT COMPOUNDED INVESTMENT

At the time when an employee joins a company, he has a savings account with $500 balance.

The savings account earns 10% p.a. interest compounded monthly. At the end of the month, the

employee makes a salary sacrifice of $500 which is deposited into the account.

Let an be the amount in the account n compounding periods after the account is opened.

a Calculate a0, a1, a2, a3, and a4.

b For n > 1, write an equation for an in terms of an¡1.

c Solve the resulting recurrence relation, that is state a closed form solution.

Example 8

Example 7

For a recurrence relation

to be properly defined,

there must be appropriate

initial conditions.
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NUMBER THEORY (Chapter 1) 25

d What is the value of the investment after 5 years?

e How long does it take for the value of the investment to reach at least $50 000?

a a0 = 500

a1 =
³
1 +

0:1

12

´
500 + 500

=
121

120
£ a0 + 500 ¼ 1004:17

a2 =
121

120
£ a1 + 500 ¼ 1512:53

a3 =
121

120
£ a2 + 500 ¼ 2025:14

fthe account has $500 balance initiallyg

b an =
121

120
an¡1 + 500, n > 1

c The recurrence relation is a0 = 500, an = ran¡1 + 500, n > 1 where r =
121

120
.

Using the summary table, we could write an = rn500 + 500
³
rn ¡ 1

r ¡ 1

´
= 500(rn + rn¡1 + :::: + r + 1)

= 500

µ
rn+1 ¡ 1

r ¡ 1

¶

d a60 = 500

2
4
³

121
120

´61
¡ 1

121
120 ¡ 1

3
5 ¼ $39 541:19

) after 5 years the investment is worth ¼ $39 541:19 .

e If 50 000 = 500

2
4
³

121
120

´n+1
¡ 1³

121
120

´
¡ 1

3
5

then n ¼ 72:04 fusing technologyg
) it will take at least 73 months, or 6 years and 1 month, to reach $50 000.

Be careful to not round

1 +
0:1
12

¼ 1:0083 as

your solution will lose

accuracy.

Alternatively, an = ran¡1 + 500

= r[ran¡2 + 500] + 500

=
...

r2an¡2 + 500r + 500

= rna0 + 500[rn¡1 + rn¡2 + :::: + r + 1]

= 500[rn + :::: + r2 + r + 1]

= 500

·
rn+1 ¡ 1

r ¡ 1

¸

= 500

2
4
³

121
120

´n+1
¡ 1³

121
120

´
¡ 1

3
5 , n 2 N
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26 NUMBER THEORY (Chapter 1)

REPAYING A LOAN WITH CONSTANT AND REGULAR REPAYMENTS

Josef borrows $12 000 to buy a car, with interest charged at 8% p.a. compounded monthly. Josef

wishes to repay the loan in regular monthly repayments. The first repayment is due one month

after the loan is taken out, after the first amount of interest is calculated and added to the loan.

Let an be the outstanding value of the loan after n months.

a Suppose Josef repays a regular monthly amount of $300.

i Calculate a0, a1, a2, and a3.

ii Write an in terms of an¡1, n > 1, and state an appropriate initial condition for the

recurrence relation.

iii Find a closed form solution for the recurrence relation.

iv What is the outstanding debt after 1 year?

v How long will it take Josef to repay the loan?

vi Calculate the total interest paid over the full term of the loan.

b Now suppose instead that Josef is prepared to take up to 5 years to repay the loan.

i Calculate the regular monthly repayment amount required to repay the loan over 5 years.

ii Calculate the total interest paid over the full term of the loan.

a i a0 = 12 000

a1 =
³
1 +

0:08

12

´
a0 ¡ 300

=
³
12:08

12

´
a0 ¡ 300 ¼ 11 780

a2 =
³
12:08

12

´
a1 ¡ 300 ¼ 11 558:53

a3 =
³
12:08

12

´
a2 ¡ 300 ¼ 11 335:6

ii a0 = 12 000, an =
³
12:08

12

´
an¡1 ¡ 300, n > 1

iii a0 = 12 000

a1 = r(12 000) ¡ 300

a2 = r[r12 000 ¡ 300] ¡ 300

=
...

r212 000 ¡ r300 ¡ 300

an = rn12 000 ¡ 300
¡
rn¡1 + rn¡2 + :::: + 1

¢
) an = rn12 000 ¡ 300

h
rn ¡ 1

r ¡ 1

i
, n 2 N

) an =
³
12:08

12

´n
12 000 ¡ 300

2
4
³

12:08
12

´n
¡ 1³

12:08
12

´
¡ 1

3
5 , n 2 N

iv One year corresponds to 12 monthly repayments. a12 = 9261:02
) the outstanding debt is about $9261.

Example 9

To ensure accuracy we use

12:08

12
or 1.006, not

1.0067, in each calculation.

We get the same solution from the summary

table for a first-degree linear inhomogeneous

recurrence relation with constant coefficients

and constant inhomogeneous term.

or an = ran¡1 ¡ 300, n > 1 where r =
12:08

12
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NUMBER THEORY (Chapter 1) 27

v If
³
12:08

12

´n
12 000 ¡ 300

2
4
³

12:08
12

´n
¡ 1³

12:08
12

´
¡ 1

3
5 = 0

then n ¼ 46:68 fusing technologyg
) the loan will be repayed after 47 months (or 3 years and 11 months).

vi The total amount repaid = 47 £ $300

= $14 100

) the total interest paid = $14 100 ¡ $12 000

= $2100

b i Using the working from a with repayment amount $p, the closed form solution is

an = rn12 000 ¡ p
h
rn ¡ 1

r ¡ 1

i
.

Using technology to solve
³
12:08

12

´60
12 000 ¡ p

2
4
³

12:08
12

´60
¡ 1³

12:08
12

´
¡ 1

3
5 = 0,

we find p ¼ 243:32

) a regular monthly repayment of $244 is required to repay the loan over 5 years.

ii The total amount repaid = 60 £ $244

= $14 640

) the total interest paid = $14 640 ¡ $12 000

= $2640

EXERCISE 1B.2

1 Write down the closed form solution for each given first-degree linear recurrence relation:

a a0 = 0, an = 100an¡1, n > 1 b a0 = 3, an = 100an¡1, n > 1

c a1 = 500, an = 10an¡1, n > 2 d a0 = 3, an = an¡1 ¡ 5, n > 1

e a0 = 0, an = an¡1 + 1, n > 1 f a2 = ¡17, an = an¡1 ¡ 4, n > 3

g a0 = 1, an = 3an¡1 + 5, n > 1 h a0 = 3, an = ¡2an¡1 + 6, n > 1

i a0 = 0, an = 5an¡1 + 3, n > 1

2 The number of cells in a culture triples every hour.

Let an equal the number of cells in the culture after n hours.

a Write a relation for an in terms of an¡1 for n > 1.

b Write down a closed form solution for an in terms of a0, the number of cells in the culture

initially.

c Suppose there are 20 000 cells in the culture after 6 hours.

i How many cells were in the culture initially?

ii How many cells will be in the culture after one full day?

iii How long will it take for the culture to grow to 51 000 000 cells?

3 A binary sequence or bit string of length n is a sequence of length n consisting of 0s and 1s.

Find and solve a recurrence relation for the number of binary sequences of length n.
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28 NUMBER THEORY (Chapter 1)

4 $500 is deposited into an account which earns 10% interest per annum, calculated at the end of each

year. There are no withdrawals.

Let an be the amount (in dollars) in the account n years after the initial deposit.

a Calculate a0, a1, a2, and a3.

b Write a recurrence relation for an in terms of an¡1, n > 1. Include the necessary initial

condition.

c Derive the closed form solution for an, n 2 N .

d Find the value of the investment after 10 years.

e How long does it take for the inital value to be doubled?

5 A savings account earns interest at 12% per annum. Suppose a0 is the initial investment, and let

an be the amount in the account after n compounding periods. an satisfies the recurrence relation

an = ran¡1, n > 1, where r is a growth multiplier for each compounding period.

a Solve the recurrence relation to obtain a closed form solution.

b Find r if the interest is compounded:

i annually ii quarterly iii monthly.

c Suppose a0 = 10 500 dollars. Find the amount in the account after 3 years, if the interest is

compounded:

i annually ii quarterly iii monthly.

6

a Find and solve a recurrence relation for the amount of the substance remaining after n days.

b What initial mass would be necessary for 80 g to remain after 7 days?

7 $1000 is invested at 4:8% per annum compounding annually. At the end of each year, the interest

is added, and then your Christmas bonus of $100 is deposited into the account. There are no

withdrawals.

Let an be the value of the investment after n years.

a Find: i a0 ii a1 iii a2 iv a3.

b Find and solve a recurrence relation for the amount in the account after n years.

c How long does it take for the initial investment to double?

8 A bacterial culture doubles in size every three hours. Suppose 800 bacteria are present initially.

Let an be the number of bacteria present after 3n hours, n 2 N .

a Find and solve a recurrence relation for an, n 2 N .

b How many bacteria are present after 1 day?

c How long does it take for the culture to grow to 1 000 000 bacteria?

9 A steel works initially produces 2000 tonnes of steel per month. Production is increased by 1% per

month, while orders remain constant at 1600 tonnes per month.

Let an be the number of tonnes of steel held in stock after n months,

where a0 = 2000 ¡ 1600 = 400 tonnes.

a Find and solve a recurrence relation for an, n 2 N .

b How much steel is held in stock after:

i 12 months ii 2 years.

c How long will it take for the amount held in stock to reach 30 000 tonnes?

A radioactive substance decays by 15% each day. Initially there are a0 grams of the substance in a

sample.
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NUMBER THEORY (Chapter 1) 29

10 A savings account contains $5000 initially. The account earns 9% per annum compounded monthly,

and at the end of each month an additional $40 is added to the account.

Let an be the amount in the account after n months.

a Find a0, a1, a2, and a3.

b Find and solve a recurrence relation for an, n 2 N .

c Calculate the amount in the account after 4 years.

d How long will it take for the investment to reach $15 000?

11 A credit card loan of $3000 is taken out at a nominal interest rate of 24% per annum compounded

monthly. The loan is to be repaid in monthly instalments of $200 which begin at the end of the first

month.

Let an be the amount owed after n months, n 2 N .

a Find a0, a1, a2, and a3.

b Find and solve a recurrence relation for an, n 2 N .

c How long will it take to repay the entire loan?

12 Suppose an amount a0 is borrowed with interest calculated and compounded at the end of each

compounding period. Suppose also that immediately after the interest is calculated and compounded,

a repayment of amount p is made in each period.

Let an be the outstanding debt after n compounding periods.

Show that:

a the recurrence relation for the amount outstanding is a0 = a0, an = ran¡1 ¡p, n > 1 where

r is the growth multiplier for each compounding period

b the corresponding closed form solution is an = rna0 ¡ p
h
rn ¡ 1

r ¡ 1

i
, n 2 N .

13 $20 000 is borrowed at 13% per annum compounded fortnightly. The loan is to be repaid in regular

fortnightly instalments beginning one fortnight after the loan is taken out.

Let an be the amount owing after n fortnights, n 2 N .

a Explain why the fortnightly repayment must be greater than $100.

b Suppose the regular fortnightly repayment is $200.

i Calculate a0, a1, a2, and a3.

ii Write a recurrence relation for an in terms of an¡1, n > 1, including the appropriate

initial condition.

iii Show that an = 40000 ¡ 20 000(1:005)n, n 2 N .

iv What is the outstanding debt after 2 years?

v How long will it take to repay the loan?

vi Calculate the total interest paid over the full term of the loan.

c Suppose instead that the loan must be repaid in 4 years.

i Calculate the fortnightly repayment required to pay off the loan in 4 years.

ii Calculate the total interest paid over the full term of the loan.
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LINES AND REGIONSINVESTIGATION 2

THE TOWER OF HANOIINVESTIGATION 1

30 NUMBER THEORY (Chapter 1)

The Tower of Hanoi is a famous puzzle consisting of n, n 2 N , discs with distinct radii placed

from largest to smallest on one of three poles.

The objective of the puzzle is to move the discs one at a time from pole to pole, with no larger disc

ever sitting on top of a smaller disc, and to finish with all discs on a different pole to the starting

pole.

Let an be the smallest number of moves required to solve the puzzle for n discs, n 2 N .

What to do:

1 Play the game and verify that a0 = 0, a1 = 1, a2 = 3, a3 = 7, a4 = 15,

a5 = 31.

2 Suppose the puzzle is solved for n¡1 discs, n > 1, so that an¡1 is known.

a Consider the puzzle with n discs and explain why an = 2an¡1 + 1.

b Hence show that:

i an = 22an¡2 + 2 + 1 ii an = 23an¡3 + 22 + 21 + 20.

c Continue the process in b until an can be expressed in terms of a0. Hence derive a closed

form solution for an, n 2 N .

Suppose n lines are drawn in the Euclidean plane such that no two lines are parallel, and no three

lines meet in a point.

The cases n = 2 and n = 3 are shown:

n = 2 n = 3

What to do:

1 Let an be the number of points of intersection in the configuration with n lines, n 2 N .

For example: a2 = 1 and a3 = 3.

a Draw the cases n = 4 and n = 5.

b Write down the values for a0, a1, a2, a3, a4, and a5.

GAME
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INTERSECTING CIRCLESINVESTIGATION 3

NUMBER THEORY (Chapter 1) 31

c Write down the relation between an and an¡1 for n > 2.

Hint: Consider how the case n = 5 is obtained from the case n = 4.

d Hence write an in terms of:

i an¡2 ii an¡3 iii a0

e State the closed form solution for an, n 2 N .

2 Repeat 1, but this time let an be the number of regions

the plane is divided into by the n lines, n 2 N .

For example: a3 = 7 regions.

Suppose n circles are drawn in the plane such that each pair of circles meet in exactly two distinct

points and no three circles meet in a point.

n = 2 n = 3

What to do:

Find and solve a recurrence relation for the number of regions into which the plane is divided by n
such circles.

SOLVING HIGHER DEGREE RECURRENCE RELATIONS USING INDUCTION

Thus far we have made use of the following ad hoc process for solving recurrence relations:

1 Calculate the first few terms a0, a1, a2, .... of the sequence.

2 Observe a pattern either in the values a0, a1, a2, ...., or else in the formula for each term by

leaving the terms in their general, un-summed form.

3 Derive or conjecture a closed form solution for the sequence.

4 Prove (if necessary) the conjectured solution is valid using an appropriate form of induction.

Some seemingly quite complicated recurrence relations can be solved using this approach, and in the

absence of a general method of solution, it is worth trying.

1

2

3

4
5

6 7

1

2 3 4

1

2 3 4

5
6

7

8

The cases n = 2 and n = 3 are shown:
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32 NUMBER THEORY (Chapter 1)

Consider the third-degree homogeneous recurrence relation with constant coefficients:

a0 = a1 = a2 = 1
an ¡ 3an¡1 + 3an¡2 ¡ an¡3 = 0, n > 3.

a Calculate the values of ai for i = 3, 4, and 5.

b Conjecture a closed form solution for an, n 2 N .

c Use strong induction to prove your conjecture.

an ¡ 3an¡1 + 3an¡2 ¡ an¡3 = 0, n > 3

) an = 3an¡1 ¡ 3an¡2 + an¡3, where a0 = a1 = a2 = 1

a a3 = 3a2 ¡ 3a1 + a0 = 3 £ 1 ¡ 3 £ 1 + 1 = 1

a4 = 3a3 ¡ 3a2 + a1 = 3 £ 1 ¡ 3 £ 1 + 1 = 1

a5 = 3a4 ¡ 3a3 + a2 = 3 £ 1 ¡ 3 £ 1 + 1 = 1

b We conjecture that an = 1 for all n 2 N .

c a0 = a1 = a2 = 1 are given.

If ak = ak+1 = ak+2 = 1 for k > 0

then ak+3 = 3ak+2 ¡ 3ak+1 + ak
= 3 £ 1 ¡ 3 £ 1 + 1

= 1

) by the Principle of (strong) Mathematical Induction, an = 1 for all n 2 N .

Find a closed form solution for the first-degree inhomogeneous recurrence relation

a1 = 2, an = 2an¡1 + 2n, n > 2.

a1 = 2

a2 = 2a1 + 22 = 2 £ 2 + 22 = 2 £ 22 = 8

a3 = 2a2 + 23 = 2 £ 8 + 23 = 3 £ 23 = 24

a4 = 2a3 + 24 = 2 £ 24 + 24 = 3 £ 24 + 24 = 4 £ 24 = 64

We conjecture that an = n2n, n > 1. We must prove this holds for all n > 1.

Now a1 = 1 £ 21 = 2 X is true.

If the conjecture is true for ak¡1, then ak¡1 = (k ¡ 1)2k¡1

) ak = 2ak¡1 + 2k

= 2(k ¡ 1)2k¡1 + 2k

= (k ¡ 1)2k + 2k

= (k ¡ 1 + 1)2k

= k2k X

) by the Principle of Mathematical Induction, an = n2n for all n > 1.

Example 11

Example 10
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NUMBER THEORY (Chapter 1) 33

EXERCISE 1B.3

1 Consider the third-degree homogeneous recurrence relation with constant coefficients:

a0 = 0, a1 = 1, a2 = 2

an ¡ 3an¡1 + 3an¡2 ¡ an¡3 = 0, n > 3.

a Calculate values of ai for i = 3, 4, ...., 7.

b Conjecture a closed form solution for an, n 2 N .

c Use strong induction to prove your conjecture.

2 Repeat question 1, replacing the initial conditions with a0 = 0, a1 = 1, a2 = 4.

3 Solve the third-degree homogeneous recurrence relation with constant coefficients:

an ¡ 7an¡1 + 16an¡2 ¡ 12an¡3 = 0, n > 3

with initial conditions:

a a0 = 1, a1 = 2, a2 = 4 b a0 = 0, a1 = 2, a2 = 8 c a0 = 1, a1 = 3, a2 = 9

4 Consider the first-degree inhomogeneous linear recurrence relation

a0 = 0, an = an¡1 + 2n(2n + 1)(n ¡ 2) + 8n ¡ 1.

a Calculate values for a1, a2, a3, and a4.

b Conjecture a closed form solution for an, n 2 N .

c Prove your conjecture.

5 Find a closed form solution for each of the following second-degree recurrence relations:

a a0 = 1, a1 = 2, an = 3an¡1 ¡ 2an¡2 b a0 = 1, a1 = 3, an = 4an¡1 ¡ 3an¡2

6 Find a closed form solution for each of the following first-degree inhomogeneous recurrence

relations:

a a0 = 1, an = nan¡1 + n!, b a0 = 1, an = 2nan¡1 + n!2n,

SECOND-DEGREE LINEAR HOMOGENEOUS RECURRENCE RELATIONS

WITH CONSTANT COEFFICIENTS

In only special cases is it possible to observe a pattern in the initial values of a sequence and hence

postulate a closed form solution. It is not a method that will work in general.

For example, using only the initial values of the Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, ....

it is near impossible to guess the closed form solution

an =
1p
5

µ
1 +

p
5

2

¶n

¡ 1p
5

µ
1¡p

5

2

¶n

, n 2 N .

We can find this closed form solution because the Fibonacci recurrence relation belongs to a class of

recurrence relations for which there is a known general method of solution.

Second-degree linear homogeneous recurrence relations with constant coefficients are of the form

an = aan¡1 + ban¡2, n > 2

with initial conditions a0, a1, where a0, a1, a, b are given constants.

n 2 Z + n 2 Z +
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34 NUMBER THEORY (Chapter 1)

We have seen that any first-degree linear homogeneous recurrence relation with constant coefficients,

an = ¸an¡1, n > 1 with a0 and ¸ constants,

has closed form solution an = a0¸
n, n 2 N , which is a geometric sequence.

This gives us the clue that for second-degree linear homogeneous recurrence relations we should try

solutions which involve geometric sequences.

Consider the second-degree linear homogeneous recurrence relation with constant coefficients:

an = 5an¡1 ¡ 6an¡2, n > 2 where a0 = 0, a1 = 1.

a For the geometric sequence an = 2n, n 2 N , show that an = 5an¡1 ¡ 6an¡2 for n > 2.

b For the geometric sequence an = 3n, n 2 N , show that an = 5an¡1 ¡ 6an¡2 for n > 2.

c Let an = c12
n + c23

n, n 2 N , for c1, c2 any constants.

i Show that an = 5an¡1 ¡ 6an¡2 for n > 2.

ii Use the initial conditions a0 = 0, a1 = 1 to solve for constants c1, c2. Hence write a

closed form solution for the recurrence relation.

a If an = 2n

then an¡1 = 2n¡1 and an¡2 = 2n¡2.

) 5an¡1 ¡ 6an¡2

= 5 £ 2n¡1 ¡ 6 £ 2n¡2

= 5 £ 2n¡1 ¡ 3 £ 2 £ 2n¡2

= 5 £ 2n¡1 ¡ 3 £ 2n¡1

= 2 £ 2n¡1

= 2n

= an

b If an = 3n

then an¡1 = 3n¡1 and an¡2 = 3n¡2.

) 5an¡1 ¡ 6an¡2

= 5 £ 3n¡1 ¡ 6 £ 3n¡2

= 5 £ 3n¡1 ¡ 2 £ 3 £ 3n¡2

= 5 £ 3n¡1 ¡ 2 £ 3n¡1

= 3 £ 3n¡1

= 3n

= an

c i If an = c12
n + c23

n, then an¡1 = c12
n¡1 + c23

n¡1 and an¡2 = c12
n¡2 + c23

n¡2.

) 5an¡1 ¡ 6an¡2

= 5(c12
n¡1 + c23

n¡1) ¡ 6(c12
n¡2 + c23

n¡2)

= c1(5 £ 2n¡1 ¡ 6 £ 2n¡2) + c2(5 £ 3n¡1 ¡ 6 £ 3n¡2)

= c12
n + c23

n fusing a and bg
= an, as required.

ii a0 = 0 = c12
0 + c23

0 ) c1 + c2 = 0

a1 = 1 = c12
1 + c23

1 ) 2c1 + 3c2 = 1

On solving the simultaneous equations

½
c1 + c2 = 0

2c1 + 3c2 = 1
we obtain c1 = ¡1, c2 = 1

) an = 3n ¡ 2n is a solution to the given recurrence relation.

Example 12

This is what it means for the recurrence

relation to be : any linear combination

of solutions will also be a solution.

linear

magentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 IB HL OPT

Discrete Mathematics

Y:\HAESE\IB_HL_OPT-DM\IB_HL_OPT-DM_01\034IB_HL_OPT-DM_01.cdr Tuesday, 26 November 2013 4:44:04 PM BRIAN



NUMBER THEORY (Chapter 1) 35

Motivated by this example, we seek solutions of the form an = ¸n to a general second-degree linear

homogeneous recurrence relation with constant coefficients

an = aan¡1 + ban¡2, n > 2, where a and b are constants.

We need to solve ¸n = a¸n¡1 + b¸n¡2, where an = ¸n, an¡1 = ¸n¡1, and an¡2 = ¸n¡2.

Assuming ¸ 6= 0, we divide through by ¸n¡2 and rearrange to obtain the quadratic equation

¸2 ¡ a¸ ¡ b = 0

called the characteristic equation of the recurrence relation.

If ¸1 and ¸2 are the solutions to the characteristic equation, then an = ¸ n
1 and an = ¸ n

2 are solutions

to the relation an = aan¡1 + ban¡2.

Consider the second-degree linear homogeneous recurrence relation with constant coefficients

an = aan¡1 + ban¡2, n > 2

with initial conditions a0, a1, where a0, a1, a, b are constants.

The auxiliary (or characteristic) equation for this recurrence relation is ¸2¡a¸¡b = 0. We suppose

the solutions to this equation are ¸1 and ¸2.

Case 1: If ¸1, ¸2 are distinct real roots then the recurrence relation has closed form solution

an = c1¸
n
1 + c2¸

n
2 , n 2 N .

Case 2: If ¸1 = ¸2 = ¸ are equal roots, then the recurrence relation has closed form solution

an = (c1 + nc2)¸
n, n 2 N .

Case 3: If ¸1, ¸2 = x § iy are complex conjugate roots then the recurrence relation has closed

form solution

an = c1¸
n
1 + c2¸

n
2 , n 2 N

= c1(x + iy)n + c2(x ¡ iy)n.

Using the appropriate polar form

x + iy = r cis µ = r(cos µ + i sin µ),

the solution can also be written as

an = rn(c1 cis (nµ) + c2 cis (¡nµ)), n 2 N .

In each case the constants c1 and c2 are found using the initial conditions a0 and a1.

We do not provide a full proof of this result, but we can verify in each case that the given function is

indeed a solution to the recurrence relation.

Case 1 and Case 3: Let an = c1¸
n
1 + c2¸

n
2 , n 2 N , where c1, c2 are constants and ¸1, ¸2 are

distinct solutions to the characteristic equation ¸2 ¡ a¸ ¡ b = 0.

) ¸ 2
1 = a¸1 + b and ¸ 2

2 = a¸2 + b .... ( ¤ )

and aan¡1 + ban¡2 = a(c1¸
n¡1
1 + c2¸

n¡1
2 ) + b(c1¸

n¡2
1 + c2¸

n¡2
2 )

= c1(a¸
n¡1
1 + b¸ n¡2

1 ) + c2(a¸
n¡1
2 + b¸ n¡2

2 )

= c1¸
n¡2
1 (a¸1 + b) + c2¸

n¡2
2 (a¸2 + b)

= c1¸
n¡2
1 (¸ 2

1 ) + c2¸
n¡2
2 (¸ 2

2 ) fusing ( ¤ )g
= c1¸

n
1 + c2¸

n
2

= an, as required.

cis_µ and polar form are

covered in

Chapter . It is useful

but not essential here.

HL Core

16
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36 NUMBER THEORY (Chapter 1)

Case 2: Let an = (c1 + nc2)¸
n, n 2 N , where c1, c2 are constants and ¸ is a repeated root of the

characteristic equation x2 ¡ ax ¡ b = 0.

) ¸2 = a¸ + b .... (1)

and (x ¡ ¸)2 = x2 ¡ 2¸x + ¸2

= x2 ¡ ax ¡ b

so that ¸2 = ¡b and ¸ =
a

2
.... (2)

Consider aan¡1 + ban¡2 = a(c1 + (n ¡ 1)c2)¸
n¡1 + b(c1 + (n ¡ 2)c2)¸

n¡2

= c1(a¸
n¡1 + b¸n¡2) + c2(a(n ¡ 1)¸n¡1 + b(n ¡ 2)¸n¡2)

= c1¸
n¡2(a¸ + b) + c2¸

n¡2(a(n ¡ 1)¸ + b(n ¡ 2))

= c1¸
n¡2(¸2) + c2¸

n¡2(n(a¸ + b) ¡ (a¸ + 2b)) fusing (1)g
= c1¸

n + c2¸
n¡2(n¸2 ¡ (¸2 + b)) fusing (1)g

= c1¸
n + nc2¸

n fusing (2)g
= (c1 + nc2)¸

n

= an, as required

Long straight pipes are constructed from 1 m long sections connected end to end. The sections

of pipe are coloured blue, white, or black depending on the material used to construct them. Any

two sections of pipe can be joined together except no two white pipe sections can be joined.

a How many different constructions of pipe can be made with length:

i 0 metres ii

b Find the recurrence relation for the number an of different pipes of length n metres, n 2 N ,

n > 2.

c Hence find the first seven terms of the corresponding sequence.

d Verify the value of a2 by considering the different possible pipes of length 2 metres.

e How many possible pipes of length 20 m are there?

a i The empty set is unique, so there is only 1 construction.

ii 3; A blue, white, or black section of pipe can be used, so there are 3 different

constructions.

b From a, a0 = 1, a1 = 3.

For n > 2, we note that either the first pipe section is white, or it is not white.

Example 13

1 metre?
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NUMBER THEORY (Chapter 1) 37

Case 1: If the first pipe section is not white, then it is blue or black, and the remaining

length of pipe can be constructed in an¡1 ways.

or

Case 2: If the first section of pipe is white, then the second section of pipe must be blue or

black, and the remaining n¡ 2 metres of pipe can be constructed in an¡2 ways.

or

The recurrence relation is a0 = 1, a1 = 3, an = 2an¡1 + 2an¡2, n > 2.

c a0 = 1

a1 = 3

a2 = 2 £ 1 + 2 £ 3 = 8

a3 = 2 £ 3 + 2 £ 8 = 22

a4 = 2 £ 8 + 2 £ 22 = 60

a5 = 2 £ 22 + 2 £ 60 = 168

a6 = 2 £ 60 + 2 £ 168 = 456

d For a pipe of length 2 metres, each of the two sections can be blue, white, or black (3 options)

except we cannot have white and white together.

) a2 = 3 £ 3 ¡ 1 = 8

3 choices for the

first section.

3 choices for the

second section.

remove the possibility

of white - white.

e This is a second-degree linear homogeneous recurrence relation with constant coefficients.

an ¡ 2an¡1 ¡ 2an¡2 = 0

) the characteristic equation is ¸2 ¡ 2¸ ¡ 2 = 0

with roots ¸ =
2§p

4 + 8

2

=
2§ 2

p
3

2

= 1 §
p

3, distinct real roots.

) the general solution is an = c1(1 +
p

3)n + c2(1 ¡ p
3)n, n 2 N .

(n - 1) m
| {z }

(n - 1) m
| {z }

(n - 2) m
{z| }

(n - 2) m
{z| }
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38 NUMBER THEORY (Chapter 1)

Using the initial conditions:

a0 = 1 a1 = 3

) c1(1 +
p

3)0 + c2(1 ¡
p

3)0 = 1 ) c1(1 +
p

3)1 + c2(1 ¡
p

3)1 = 3

) c1 + c2 = 1 .... (1) ) c1(1 +
p

3) + c2(1 ¡
p

3) = 3

) c1(1 +
p

3) + (1 ¡ c1)(1 ¡
p

3) = 3 fusing (1)g
) 2

p
3c1 = 2 +

p
3

) c1 =
2 +

p
3

2
p
3

£
p
3p
3

) c1 =
3 + 2

p
3

6

) c1 = 1
2 + 1p

3

) c2 = 1
2 ¡ 1p

3
fusing (1)g

) the general solution is an =
³

1
2 + 1p

3

´
(1 +

p
3)n +

³
1
2 ¡ 1p

3

´
(1 ¡ p

3)n, n 2 N .

Hence a20 = 578272 256.

This is not necessarily obvious from the closed form solution!

Solve the recurrence relation an+2 = 6an+1 ¡ 9an, n > 0 with initial conditions a0 = 2,

a1 = 2. Hence find a10.

This is a second-degree linear homogeneous recurrence relation with constant coefficients.

) the characteristic equation is ¸2 ¡ 6¸ + 9 = 0

) (¸ ¡ 3)2 = 0

) ¸ = 3 is a repeated root.

) the general solution is an = (c1 + nc2)3
n, n 2 N .

Using the initial conditions:

a0 = 2

) (c1 + 0 £ c2) £ 30 = 2

) c1 = 2

a1 = 2

) (c1 + 1 £ c2) £ 31 = 2

) (2 + c2) £ 3 = 2

) 3c2 = ¡4

) c2 = ¡4
3

) the general solution is an = (2 ¡ 4
3n)3n, n 2 N .

Hence a10 = (2 ¡ 40
3 )310 = ¡669 222.

Example 14

an+2 ¡ 6an+1 + 9an = 0

Notice in the above Example that since the initial values are integers, the relation an = 2an¡1 + 2an¡2

will always result in an integer.
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NUMBER THEORY (Chapter 1) 39

Solve the recurrence relation xn + 2xn¡1 + 5xn¡2 = 0, n > 2 with initial conditions x0 = 2,

x1 = ¡2. Hence find the closed form solution.

This is a second-degree linear homogeneous recurrence relation with constant coefficients.

The characteristic equation is ¸2 + 2¸ + 5 = 0

) ¸ =
¡2§p

4¡ 20

2

) ¸ = ¡1 § 2i, complex conjugate roots.

) the general solution is xn = c1(¡1 + 2i)n + c2(¡1 ¡ 2i)n, n 2 N .

Using initial conditions:

x0 = 2

) c1 + c2 = 2 .... (1)

x1 = ¡2

) c1(¡1 + 2i) + c2(¡1 ¡ 2i) = ¡2

) c1(¡1 + 2i) + (2 ¡ c1)(¡1 ¡ 2i) = ¡2

) c1(¡1 + 2i + 1 + 2i) ¡ 2 ¡ 4i = ¡2

) 4ic1 = 4i

) c1 = 1, c2 = 1.

) xn = (¡1 + 2i)n + (¡1 ¡ 2i)n, n 2 N

We can also write the solution using polar form.

In this case r =
p

(¡1)2 + 22 =
p

5

and µ = ¼ ¡ arctan(2)

xn = (
p

5)n(cisnµ + cis (¡nµ))

) xn = 2(
p

5)n cos(nµ), µ = ¼ ¡ arctan(2), n 2 N .

EXERCISE 1B.4

1 Find the closed form solution for each recurrence relation:

a an = an¡1 + 12an¡2, n > 2 with a0 = 12, a1 = 24

b an ¡ 3an¡1 + 2an¡2 = 0, n > 2 with a0 = 2, a1 = 3

c xn+2 ¡ xn+1 ¡ 2xn = 0, n 2 N with x0 = 1, x1 = 1

d an ¡ an¡1 ¡ 2an¡2 = 0, n > 2 with a0 = 7, a1 = 11

e an = 5an¡1 ¡ 6an¡2, n > 2 with a0 = 3, a1 = 5

2 Solve the recurrence relation an = an¡1 + an¡2, n > 1 with a0 = 0, a1 = 1 to find the closed

form solution for the Fibonacci sequence.

Example 15

If you have not yet studied polar

form, leaving the solution as

,

is sufficient.

x i i
n

n = ( 1 + 2 ) + ( 1 2 )¡ ¡ ¡
2

n n

N
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40 NUMBER THEORY (Chapter 1)

3 Find the following recurrence relations:

a an = 2an¡1 ¡ an¡2, n > 2 with a0 = 2, a1 = 2

b an ¡ 10an¡1 + 25an¡2 = 0, n > 2 with a0 = 7, a1 = 4

c an+2 + 4an+1 + 4an = 0, n 2 N with a0 = 2, a1 = ¡2

d xn+2 + 8xn+1 + 16xn = 0, n 2 N with x0 = 2, x1 = 0

e xn+2 ¡ 2xn+1 + 2xn = 0, n 2 N with x0 = 2, x1 = 2

f an+2 ¡ 2an+1 + 5an = 0, n 2 N with a0 = 4, a1 = 4

4 Let an = aan¡1 + ban¡2, n > 2, a0, a1, be a second-degree linear homogeneous recurrence

relation with constant coefficients, where a0, a1, a, b are all integer constants.

Suppose the recurrence relation has solution an = c1¸
n
1 + c2¸

n
2 where ¸1, ¸2 = x § iy are

conjugate complex numbers, and c1, c2 are constants.

Prove that c1 = c2 =
a0

2
.

5 Solve the following recurrence relations:

a an = ¡2an¡1 ¡ 2an¡2, n > 2 with a0 = 2, a1 = ¡2

b an + an¡1 + an¡2 = 0, n > 2 with a0 = 4, a1 = ¡2

c un+2 + 4un+1 + 5un = 0, n 2 N with u0 = 4, u1 = ¡8

d an = 4an¡1 ¡ 5an¡2, n > 2 with a0 = 6, a1 = 12

6 A plumber has 3 different types of pipe sections. The red and blue types have length two units each,

and the white type has length 1 unit. The sections of pipe are joined end to end to create one long

pipe. Find and solve a recurrence relation for the number of different pipes of length n units.

7 Coloured blocks are lined up end to end to form one long line of blocks. There are three types of

blocks. There are red and blue blocks of length 1 unit, and green blocks of length 2 units.

Find and solve a recurrence relation for the number of different lines of blocks of length n units.

8 A sequence of 0s, 1s, and 2s, is called a ternary string. The number of digits in the sequence is

the length of the string.

Find and solve a recurrence relation for the number of ternary strings of length n with no

consecutive 0s.

9 A multi-trip travel card worth $n can be purchased from a machine which accepts $1 and $2 coins

only. The coins are deposited in the machine one after the other, creating a sequence of $1 and

$2 coins.

Find and solve a recurrence relation for the number of ways to purchase an $n travel card.
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HOW MANY PRIMES ARE THERE?INVESTIGATION 4

NUMBER THEORY (Chapter 1) 41

In previous studies of the positive integers, we have found that prime numbers are the essential building

blocks of the factors of an integer. The study of divisibility, prime numbers, and the factors of an integer,

are all intimately related.

Do you think that there are infinitely many prime numbers, or do you think that the list terminates

with a highest prime number?

In this Investigation you will attempt to prove by contradiction the statement “There are an infinite

number of primes”.

What to do:

1 What is the negation (or opposite) of the statement: “There are an infinite number of primes”?

This will be the statement we try to contradict.

2 Suppose there is a largest prime P .

Now consider the number N = P ! + 1.

a Do you know whether N is prime or composite?

Hint: Consider P = 3 and P = 5.

b If N is prime, what does this say about your assumption about P ?

c Suppose N is composite.

i Consider N = 19! + 1. Explain why N is not divisible by any of the integers

2, 3, 4, ...., 19.

ii Consider N = P ! + 1. Explain why N is not divisible by any of the integers

2, 3, 4, ...., P .

iii If N is not divisible by any integer 6 P , but N is composite, what does this say about

any prime factor k of N?

iv Complete the proof by contradiction, that there are an infinite number of primes.

3 The proof you obtained in 2 is a variant on Euclid’s proof of the infinitude of primes, written

around 300 B.C. Research Euclid’s proof and see how it varies from the one in 2.

Identifying primes and composites is an important task for digital security. However, it is a non-trivial

task to identify very large primes quickly, even with very powerful computers. To understand better how

primes and composites can be identified, we now look at the formal rules governing divisibility.

If d and n are integers, d 6= 0, then d divides n , there exists k 2 Z such that n = dk.

We use the notation d j n to read d divides n

or d is a divisor of n

or d is a factor of n

or n is a multiple of d.

DIVISIBILITY, PRIME NUMBERS, AND THE

DIVISION ALGORITHM

C

IB HL OPT
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42 NUMBER THEORY (Chapter 1)

For example, we write 3 j 12 to indicate that 3 divides 12.

We write 5 j= 12 to indicate that 5 does not divide 12.

DIVISIBILITY PROPERTIES

² n j n, n 6= 0 (every non-zero integer divides itself)

² d j n and n j m ) d j m (transitivity)

² d j n and d j m ) d j (an + bm) for all a, b 2 Z (linearity)

² d j n ) ad j an (multiplicative)

² ad j an ) d j n if a 6= 0 (cancellation)

² 1 j n (1 divides every integer)

² n j 1 ) n = §1

² d j 0 for every non-zero d 2 Z

² If d, n 2 Z + and d j n, then d 6 n.

The linearity property says that if d divides both n and m, then d divides all linear combinations of

n and m. In particular, d j (n + m) and d j (n ¡ m).

Prove the transitivity property: If d j n and n j m then d j m.

Implicitly, we have that d, n 6= 0.

d j n ) there exists k1 such that n = k1d, k1 2 Z

n j m ) there exists k2 such that m = k2n, k2 2 Z

) m = k2n = k2(k1d) = k1k2d where k1k2 2 Z

) d j m

Prove that n j 1 ) n = §1.

n j 1 ) there exists k such that 1 = kn, k 2 Z

So, we have to solve kn = 1 where k and n are integers.

The only solutions are k = 1, n = 1 or k = ¡1, n = ¡1

) n = §1

EXERCISE 1C.1

1 Prove the multiplicative property: d j n ) ad j an where a, d, n 2 Z and d, a 6= 0.

2 Prove the linearity property: d j n and d j m ) d j (an + bm) for all a, b 2 Z .

3 Prove that if d, n 2 Z + and d j n, then d 6 n.

Example 17

Example 16
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NUMBER THEORY (Chapter 1) 43

4 Prove that if a 2 Z , then the only positive divisor of both consecutive integers a and a+ 1, is 1.

5 Prove that there do not exist integers m and n such that:

a 14m + 20n = 101 b 14m + 21n = 100

6 Suppose a, b, c 2 Z , a 6= 0. Prove that a j b and a j c ) a j (b § c).

7 Suppose a, b, c, d 2 Z where a, c 6= 0. Prove that a j b and c j d ) ac j bd.

8 Given p, q 2 Z such that p j q, prove that pn j qn where n 2 Z .

THE DIVISION ALGORITHM

The Division Algorithm extends our notion of divisibility to the case where remainders are obtained.

For any a, b 2 Z with b > 0, there exists unique q, r 2 Z
such that a = bq + r and 0 6 r < b.

q is the greatest integer such that q 6
a

b
and is called the quotient.

r is called the remainder, a is the dividend, and b is the divisor.

For example: For the integers 27 and 4, 27 = 6 £ 4 + 3
The dividend is 27, the divisor is 4, the quotient is 6, and the remainder is 3.

Find the quotient and remainder for:

a a = 133, b = 21 b a = ¡50, b = 8 c a = 1781 293, b = 1481

a
a

b
= 6:333 ::::

) q = 6

Now r = a ¡ bq

) r = 133 ¡ 21 £ 6

) r = 7

b
a

b
= ¡6:25

) q = ¡7

Now r = a ¡ bq

) r = ¡50 ¡ 8(¡7)

) r = 6

c
a

b
= 1202:76 ::::

) q = 1202

Now r = a ¡ bq

) r = 1781 293

¡ 1481 £ 1202

) r = 1131

If the divisor b = 5, then a = 5q+r where r = 0, 1, 2, 3, or 4. There are no other possible remainders

on division by 5. The different values of r partition the set of integers into five disjoint subsets with

membership of a given subset being dependent solely on the value of the remainder on division by 5.

Thus each integer can be written in the form 5k, 5k+1, 5k+2, 5k+3, or 5k+4 for some k 2 Z ,

depending on its remainder on division by 5.

For example, 35 and 240 belong to the set fintegers divisible by 5g
36 and 241 belong to the set fintegers with remainder 1 on division by 5g.

The Division Algorithm states that if results about divisibility by 5 apply to “2” then they apply to all

numbers with remainder 2 on division by 5, which are the integers with the form 5k + 2 for some

k 2 Z .

Example 18
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44 NUMBER THEORY (Chapter 1)

EXERCISE 1C.2

1 Show that:

a 3 j 66 b 7 j 385 c 654 j 0

2 Find the quotient and remainder in the division process with divisor 17 and dividend:

a 100 b 289 c ¡44 d ¡100

3 What can be deduced about non-zero integers a and b if a j= b and b j= a?

4 a Is it possible to find prime integers p, q, and r such that p j qr but p j= q and p j= r?

b When is it possible to find integers p, q, and r such that p j qr but p j= q and p j= r?

5 Prove that if the product of k integers is odd, then all of the individual integers are themselves odd.

6 a Prove that the square of an integer can be written in the form 3k or 3k + 1 for some k 2 Z .

b Prove that the square of an integer can be written in the form 4q or 4q + 1 for some q 2 Z .

c Deduce that 1 234 567 is not a perfect square.

Proof:

( ) ) If 3 j a, then a = 3q for some q 2 Z

) a2 = 9q2

) a2 = 3(3q2) where 3q2 2 Z

) 3 j a2

( ( ) Instead of showing 3 j a2 ) 3 j a, we will prove the

contrapositive 3 j= a ) 3 j= a2.

Now if 3 j= a,

then a = 3q + 1 or a = 3q + 2

) a2 = 9q2 + 6q + 1 or a2 = 9q2 + 12q + 4

) a2 = 3(3q2 + 2q) + 1 or a2 = 3(3q2 + 4q + 1) + 1

) 3 j= a2 fsince in each case the remainder is 1g
Hence 3 j= a ) 3 j= a2, and therefore

3 j a2 ) 3 j a fcontrapositiveg.

7 Prove that if a 2 Z then:

a 5 j a , 5 j a2 b 3 j a2 , 9 j a2

8 a Prove that n = 2 ) (n + 3)(n ¡ 2) = 0

b Is the converse in a true?

c There are several different ways to read the statement p ) q. These are:

² “If p then q” ² “q if p”

² “p is sufficient for q” ² “q is necessary for p”

Example 19

For help, consult the

.appendix on proof

Prove that if a 2 Z , then 3 j a , 3 j a2.
3 a 3 a

3 a 3 a
means

and are logically

equivalent statements.

j , j
j j

2

2
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p q
p q

is

sometimes written .

if and only if

iff

NUMBER THEORY (Chapter 1) 45

Using the above, which of the following are true and which are not?

i n = 2 if n2 + n ¡ 6 = 0

ii n = 2 is sufficient for n2 + n ¡ 6 = 0

iii n = 2 is necessary for n2 + n ¡ 6 = 0

iv a < b is sufficient for 4ab < (a + b)2

v a < b is necessary and sufficient for 4ab < (a + b)2

vi a < b if and only if 4ab < (a + b)2

vii a < b is equivalent to 4ab < (a + b)2

9 a Prove that any integer of the form 8p + 7, p 2 Z , is also of the form 4q + 3, q 2 Z .

b Provide a counter example to show that the converse of a is not true.

10 Prove that:

a the cube of an integer takes either the form 9k or 9k § 1

b the fourth power of an integer takes either the form 5k or 5k + 1.

11 Prove that an integer of the form 3k2 ¡ 1, k 2 Z , is never a square.

Hint: Consider the contrapositive of this statement.

12 Suppose n > 1. Prove, by considering exhaustive cases for the form of n, that

n(n+ 1)(2n+ 1)

6
2 Z . Find another, alternative proof.

13 The nth repunit is the integer consisting of n “1”s. Prove that no repunit, except 1, can be a perfect

square.

Hint: If necessary, see Exercise 1A.1 question 3.

14 Prove, by using exhaustive cases, that if an integer is both a perfect square and a perfect cube, then

it will take one of the two forms 7k or 7k + 1.

15 Suppose n 2 Z +.

a Prove that 7n3 + 5n is even by using the Division Algorithm and considering cases.

b Prove that n(7n2 + 5) is of the form 3k, where k 2 Z +.

c Hence, prove that the integer n(7n2 + 5) is of the form 6k.

d Prove the result in c directly, by considering six exhaustive cases for the form of n.

16 Given a 2 Z , prove that 3 j (a3 ¡ a).

17 a Show that the product of any two integers of the form 4k + 1 also has this form.

b Show that the product of any two integers of the form 4k + 3 has the form 4p + 1.

c What do these results tell you about the square of any odd number?

d Show that the fourth power of any odd integer is of the form 8k + 1, k 2 Z +.

18 a Prove by induction that the product of any three consecutive positive integers is divisible by 6.

b Prove this result for all integers using the Division Algorithm.

19 a Prove by induction that 5 j (n5 ¡ n) for all n 2 Z +.

b Prove this result using the Division Algorithm.

20 Prove that the sum of the cubes of any three consecutive integers is divisible by 9.
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46 NUMBER THEORY (Chapter 1)

INTEGER REPRESENTATION IN VARIOUS BASES

Repeated use of the Division Algorithm, and the uniqueness of its representation of integers, is the basis

of our decimal number system.

We express numbers in the decimal system as a sum of powers of 10. We call 10 the base of our number

system.

For example, 34 765 = 3 £ 104 + 4 £ 103 + 7 £ 102 + 6 £ 101 + 5 £ 100

The coefficients of the powers of 10 in such an expansion come from the set f0, 1, 2, 3, 4, 5, 6, 7, 8, 9g
which we denote Z 10.

If a base number is not given, it is assumed to be base 10.

For example, 347, (347)10, and 34710 all refer to the same base 10 integer.

We use 10 as the base probably because we have 10 fingers for counting! However, we could use any

other positive integer as our base, since the Division Algorithm ensures that the representation of each

integer is unique in that base.

Integers written in binary (base 2) are very important in computer science.

Integers are written in binary using powers of 2, and digits from the set Z 2 = f0, 1g as their coefficients.

For example, 101 1012 = 1 £ 25 + 0 £ 24 + 1 £ 23 + 1 £ 22 + 0 £ 21 + 1 £ 20.

Convert:

a 101 1012 to a base 10 integer b the base 10 integer 347 into binary.

a 101 1012 = 1 £ 25 + 1 £ 23 + 1 £ 22 + 1 £ 20

= 32 + 8 + 4 + 1

= 4510

b We need to write 347 in the form ak2k + ak¡12
k¡1 + :::: + a22

2 + a12
1 + a0 where each

ai 2 Z 2 and Z 2 = f0, 1g.

We obtain the coefficients ai using repeated division by 2 and recording the remainders, in

reverse.

2 347 r

2 173 11

2 86 11

2 43 00

2 21 11

2 10 11

2 5 00

2 2 11

11 00

347 = 2 £ 173 + 1

173 = 2 £ 86 + 1

86 = 2 £ 43 + 0

43 = 2 £ 21 + 1

21 = 2 £ 10 + 1

10 = 2 £ 5 + 0

5 = 2 £ 2 + 1

2 = 2 £ 1 + 0 So, 34710 = 101101 011011 0110112

Example 20
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1

1

~`2

For more information consult

the .appendix on proofs

NUMBER THEORY (Chapter 1) 47

EXERCISE 1C.3

1

2

3

4

5

6

7

THE EXISTENCE OF IRRATIONALS

The first real number found to be irrational was probably
p

2. Its existence as a real number is readily

observed from a right-angled triangle with perpendicular sides of length 1 unit and applying Pythagoras’

theorem:

In this section we consider proofs for whether a number is rational or irrational.

Since each real number must be one or the other, an effective method

for proving irrationality is a proof by contradiction.

Convert 110 101 0112 from binary to a decimal (base 10) integer.

Convert 21 012 2013 from ternary to decimal notation.

Convert:

a 347 into base 3 b 1234 into base 8 c 5728 into base 7.

Write 87 532 in base 5.

Convert 1 001 111 1012 from binary into:

a base 10 b base 4 c base 8.

Convert 201 021 1023 from ternary into:

a base 10 b base 9.

Convert 2 122 122 1023 from ternary into base 9.

8 Detail a method of converting a given integer from base k into base k2.

9 Detail a method of converting a given integer from base k2 into base k.

10 Convert 313 123 0124 into binary.

11 Convert 6 326 452 3789 into ternary.

12 Convert 56 352 7438 into binary.

13 By repeated use of the Division Algorithm, find the infinite decimal representation of the rational

number 5
7 .

Hint: Suppose 5
7 = a1 £ 10¡1 + a2 £ 10¡2 + :::: where each ai 2 Z 10.
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48 NUMBER THEORY (Chapter 1)

a Suppose p 2 Z +. Prove that if p2 has 3 as a factor, then p has 3 as a factor.

b Prove that the real number
p

3 is irrational.

a Suppose p 2 Z +. On division by 3, p has remainder 0, 1, or 2.

) p = 3t, 3t + 1, or 3t + 2 for some t 2 Z .

) p2 = 9t2, 9t2 + 6t + 1, or 9t2 + 12t + 4

) p2 = 3(3t2), 3(3t2 + 2t) + 1, or 3(3t2 + 4t + 1) + 1

Only the form p2 = 3(3t2) has 3 as a factor.

) if p2 has 3 as a factor then p has 3 as a factor.

b Suppose
p

3 is rational.

)
p

3 =
p

q
for some p, q 2 Z +, q 6= 0 such that p and q have no common

factors besides 1.

) p = q
p

3

) p2 = 3q2

) p2 has 3 as a factor

) p has 3 as a factor ffrom ag
) p = 3t for some t 2 Z

) since p2 = 3q2,

(3t)2 = 3q2

) 9t2 = 3q2

) 3t2 = q2

) q2 has 3 as a factor

) q has 3 as a factor ffrom ag
) p and q have 3 as a common factor, which is a contradiction.

Therefore
p

3 is irrational.

EXERCISE 1C.4

1 Prove that
p

2 is irrational.

2 Prove that
p

5 is irrational.

3

4 Prove that 2
1

4 is irrational.

Example 21

Attempt to prove that
p

4 is irrational using the same argument as in Example 21. At which step

does it fail?
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NUMBER THEORY (Chapter 1) 49

GREATEST COMMON DIVISOR (GCD)

We know that 3 j 6 and 3 j 15, and no greater number has this property of dividing both 6 and 15.

We say that the greatest common divisor of 6 and 15 is 3, and write gcd(6, 15) = 3.

The greatest common divisor (or highest common factor) of non-negative integers a and b,

is written gcd(a, b) (or simply (a, b) in some texts).

d = gcd(a, b) , (1) d j a and d j b
(2) if e j a and e j b then e j d

For example: gcd(24, 36) = 12, gcd(12, 0) = 12, gcd(15, 28) = 1

RELATIVELY PRIME INTEGERS

Integers a and b are called relatively prime (or coprime) if gcd(a, b) = 1.

Theorem: If d = gcd(a, b) then (1) gcd
³
a

d
,
b

d

´
= 1

(2) gcd(a, b) = gcd(a + cb, b), a, b, c 2 Z

Proof:

GCD, LCM, AND THE EUCLIDEAN ALGORITHMD

(1) For e 2 Z +, if e j
³
a

d

´
and e j

³
b

d

´
then there exist integers k and l such that

a

d
= ke and

b

d
= le

) a = kde and b = lde

) a and b have de as a common divisor.

But d = gcd(a, b) ) de 6 d ) e = 1 ) gcd
³
a

d
,
b

d

´
= 1

(2) Let e be a common divisor of a and b, so e j a and e j b
) e j (a + cb) where c 2 Z flinearity property of divisibilityg

) gcd(a, b) is a common divisor of b and a + cb

) gcd(a, b) 6 gcd(a + cb, b) .... ( ¤ )

If f is a common divisor of b and a + cb

) f is a common divisor of b and (a + cb) ¡ cb flinearity property of divisibilityg
) f is a common divisor of b and a

) gcd(a + cb, b) is a common divisor of a and b

) gcd(a + cb, b) 6 gcd(a, b) .... ( ¤ ¤ )

From ( ¤ ) and ( ¤ ¤ ), gcd(a, b) = gcd(a + cb, b).

) e is a common divisor of b and a + cb
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50 NUMBER THEORY (Chapter 1)

Theorem:

For positive integers a and b, the gcd(a, b) is the least positive integer that is a linear combination

of a and b.

In other words, if d = gcd(a, b) then d = ma + nb where m, n 2 Z ,

and if k = pa + qb, p, q 2 Z , then k > d.

Proof:

Let d be the least positive integer that is a linear combination of a and b.

We must now show that (1) d j a and d j b
(2) d = gcd(a, b)

(1) Since d is a linear combination of a and b, let d = ma + nb, m, n 2 Z .

Since d > 0, a = dq + r for some q, r 2 Z with 0 6 r < d. fDivision Algorithmg
) r = a ¡ dq

= a ¡ q(ma + nb)

= (1 ¡ qm)a ¡ qnb

and so r is a linear combination of a and b.

However, we have defined d as the least positive linear combination of a and b.

) since 0 6 r < d, we can only conclude that r = 0.

Consequently a = dq, and hence d j a.

By similar argument, we also conclude that d j b.
(2) By the linearity property, if e is any common divisor of a and b, then e j (ma + nb).

But d = ma + nb, so e j d.

Consequently, by definition, d = gcd(a, b).

Note that this is an existence proof. It tells us that the gcd(a, b) is a linear combination of a and b, but

it does not tell us what the linear combination is. To calculate the gcd(a, b) as a linear combination of

a and b, we need the Euclidean Algorithm, which we will study soon.

Corollary: For positive integers a and b, any linear combination of a and b is a multiple of

d = gcd(a, b).

Proof:

From the above theorem, d = ma + nb for some integers m, n 2 Z , and d is the least positive

integer with this property.

Suppose s = pa + qb where p, q 2 Z .

Case s = 0: 0 = 0 £ d is a multiple of d.

Case s > 0: If s > 0 then s > d fd is the least positive linear

combination of a and bg
) pa + qb > ma + nb

) (p ¡ m)a + (q ¡ n)b > 0

If (p ¡ m)a + (q ¡ n)b 6= 0, then this is a positive linear combination of a and b.
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NUMBER THEORY (Chapter 1) 51

) since d = ma + nb is the least such linear combination,

(p ¡ m)a + (q ¡ n)b > ma+ nb

(p ¡ 2m)a + (q ¡ 2n)b > 0

Since p, q are finite, by repeating this argument we find that there exists t 2 Z +

such that (p ¡ tm)a + (q ¡ tn)b = 0

) p = tm and q = tn fsince a and b are positiveg
) s = (tm)a + (tn)b

= t(ma + nb)

= td

) s is a multiple of d.

Case s < 0: In this case we consider r = ¡s = (¡p)a + (¡q)b.

Since r > 0, we repeat the above argument and obtain that r, and therefore s, is a

multiple of d = gcd(a, b).

Corollary:

Consider positive integers a and b with d = gcd(a, b).

For any multiple rd of d, with r 2 Z , the equation ax+by = rd has infinitely many integer solution

pairs (x, y).

Proof: d = ma + nb for some integers m, n 2 Z .

) rd = rma+ rnb

= a(rm) + b(rn)

= a
³
rm ¡ tb

d

´
+ b
³
rn +

ta

d

´
where t is any integer

) rd = ax + by has infinitely many solution pairs (x, y) of the form

x = rm ¡ t
b

d
,

y = rn + t
a

d
.

These solutions are integers since d = gcd(a, b).

From the proof above, if ax + by = s has a particular integer solution x = x0, y = y0, then all of

its solutions can be written in the form

x = x0 + t
³
b

d

´
, y = y0 ¡ t

³
a

d

´
where d = gcd(a, b) and t 2 Z .

Determine whether the following equations have integer solutions x, y 2 Z .

If an equation has integer solutions, state a solution pair by inspection, and hence write the form

of all integer solutions.

a 24x + 36y = 12 b 24x + 36y = 18 c 24x + 36y = 48

Example 22
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52 NUMBER THEORY (Chapter 1)

a

b

c

Theorem:

For non-zero integers a and b, with d = gcd(a, b)

a and b are relatively prime , there exist m, n 2 Z such that ma + nb = 1.

Proof: ( ) ) a and b relatively prime

) gcd(a, b) = 1

) there exist m, n 2 Z such that ma + nb = 1 fTheoremg
( ( ) If d = gcd(a, b)

) d j a and d j b
) d j ma + nb fdivisibility propertyg
) d j 1

) d = 1

) a and b are relatively prime.

Prove that
p

2 is irrational.

Proof: (By contradiction)

Suppose that
p

2 is rational.

)
p

2 =
p

q
where p, q 2 Z +, gcd(p, q) = 1

Since gcd(p, q) = 1, there exist r, s 2 Z + such that rp + sq = 1

Hence,
p

2 =
p

2(rp + sq) = (
p

2p)r + (
p

2q)s

)
p

2 = (
p

2
p

2q)r + (
p

2
pp
2
)s fusing

p
2 =

p

q
g

)
p

2 = 2qr + ps

)
p

2 is an integer fsince p, q, r, s 2 Z +g
This is a contradiction, so

p
2 must be irrational.

Example 23

We saw a different proof for

the irrationality of earlier.~`2

Since gcd(24, 36) = 12, there exist integers x, y such that 24x + 36y = 12.

By inspection, a solution is x0 = ¡1, y0 = 1.

Since 24
12 = 2 and 36

12 = 3, the solutions have the form x = ¡1 + 3t, y = 1 ¡ 2t for any

t 2 Z .

Since gcd(24, 36) = 12 and 18 is not a multiple of 12, there are no solutions for which

x and y are both integers.

Since gcd(24, 36) = 12 and 48 is a multiple of 12, there exist integers x, y such that

24x + 36y = 48.

By inspection, a solution is x0 = 2, y0 = 0.

Since 24
12 = 2 and 36

12 = 3, the solutions have the form x = 2 + 3t, y = ¡2t for any

t 2 Z .
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NUMBER THEORY (Chapter 1) 53

Corollary: If a j c and b j c with gcd(a, b) = 1 then ab j c.

Proof: As gcd(a, b) = 1, there exist integers m, n such that ma + nb = 1

) mac + nbc = c

But a j c and b j c ) c = ka and c = lb for some integers k, l.

) ma(lb) + nb(ka) = c

) ab(ml + nk) = c

) ab j c

Although it may seem trivial, this corollary is important in a practical way.

We know, for example, that 8 j 144 and 9 j 144 and gcd(8, 9) = 1.

Hence 72 j 144.

The result is not true for divisors which are not relatively prime.

For example, 8 j 144 and 12 j 144 but gcd(8, 12) = 4 6= 1. In this case 8 £ 12 j= 144.

EUCLID’S LEMMA

If a j bc and gcd(a, b) = 1, then a j c.

Proof: As gcd(a, b) = 1, there exist integers m, n such that ma + nb = 1

) mac + nbc = c

But a j bc ) bc = ka for some integer k.

) mac + n(ka) = c

) a(mc + nk) = c

) a j c

Note that if the condition gcd(a, b) = 1 is not true, the Lemma in general fails.

For example, consider a = 12, b = 9 where gcd(12, 9) = 3 6= 1.

For c = 8, 12 j 9 £ 8 but 12 j= 8 so a j= c.
For c = 24, 12 j 9 £ 24 but 12 j 24 so a j c.

EXERCISE 1D.1

1 a Suppose a, b, c, d 2 Z . Prove that for a 6= 0:

i if a j b then a j bc ii if a j b and a j c then a2 j bc
iii if a j b and c j d then ac j bd (c 6= 0) iv if a j b then an j bn.

b Is the converse of a iv true?

2 Suppose k 2 Z . Prove that one of k, k + 2, or k + 4 is divisible by 3.

3 Determine the truth or otherwise of the statement:

If p j (q + r) then either p j q or p j r.
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54 NUMBER THEORY (Chapter 1)

4 Determine whether each of the following equations has integer solutions x, y 2 Z . If an equation

has integer solutions, state a solution pair by inspection, and hence write the form of all integer

solutions.

a 24x + 18y = 9 b 2x + 3y = 67 c 57x + 95y = 19

d 1035x + 585y = 901 e 45x ¡ 81y = 108

5 a Prove that:

i the product of any three consecutive integers is divisible by 3

ii the product of any three consecutive integers is divisible by 6

iii the product of any four consecutive integers is divisible by 8

iv the product of any four consecutive integers is divisible by 24.

b Is the product of any n consecutive integers divisible by n!?

6 Prove that 3 j k(k2 + 8) for all k 2 Z .

7 Heta claims that “the product of four consecutive integers is one less than a square”.

a Check Heta’s statement by examining three examples.

b Prove or disprove Heta’s claim.

8 a Prove that for a 2 Z and n 2 Z +, gcd(a, a + n) j n.

b Hence, prove that for a 2 Z , gcd(a, a + 1) = 1.

9 Use the linearity property to show that for k 2 Z ,

a gcd(3k + 1, 13k + 4) = 1 b gcd(5k + 2, 7k + 3) = 1

10 a Given any non-zero integers a and b, prove that gcd(4a ¡ 3b, 8a ¡ 5b) divides b but not

necessarily a.

b Hence, prove that gcd(4a + 3, 8a + 5) = 1.

11 Prove that if gcd(a, b) = 1 and c j a, then gcd(c, b) = 1.

12 Suppose gcd(a, b) = 1. Prove that gcd(a2, b) = gcd(a, b2) = 1, and hence that gcd(a2, b2) = 1.

13 Prove, using a gcd theorem, that
p

3 is irrational.

14 a Using the identity xk ¡ 1 = (x ¡ 1)(xk¡1 + xk¡2 + xk¡3 + ::::+ x+ 1) and by considering

repunits, prove that if d j n then (2d ¡ 1) j (2n ¡ 1).

b Establish that 235 ¡ 1 is divisible by both 31 and 127.

15 Show that for k 2 Z + the integers 3k + 2 and 5k + 3 are relatively prime.

16 Show that if k is an even positive integer then 5k + 3 and 11k + 7 are relatively prime.

17 Given a, b 2 Z and gcd(a, b) = 1, prove that gcd(a + b, a ¡ b) = 1 or 2.
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NUMBER THEORY (Chapter 1) 55

THE EUCLIDEAN ALGORITHM

The Euclidean Algorithm is the most efficient (and ingenious) way of determining the greatest common

divisor of two integers. It was detailed in Euclid’s Elements and has been known in most of the world

since antiquity. It is based on the Division Algorithm.

Lemma:

If a = bq + r where a, b, and q are integers, then gcd(a, b) = gcd(b, r).

Proof:

If d j a and d j b ) d j (a ¡ bq) flinearity propertyg
) d j r

Hence, any common divisor of a and b is also a common divisor of b and r.

Likewise, if d j b and d j r ) d j (bq + r) ) d j a.

Hence, any common divisor of b and r is also a common divisor of a and b.

Since the common divisors of a and b are the same as the common divisors of b and r, it is clear that

gcd(a, b) = gcd(b, r).

The Euclidean Algorithm is the repeated use of the above Lemma, with two given integers, to find their

greatest common divisor. It is remarkable in that it does not depend on finding any of the divisors of the

two numbers in question, other than (of course) the greatest common divisor.

Although it is not the only method of doing so, it also provides a method for expressing gcd(a, b) as

a linear combination of a and b if this is desired.

Suppose a and b are positive integers with a > b, and let r0 = a and r1 = b.

When we successively apply the Division Algorithm, we obtain:

r0 = r1q1 + r2, 0 6 r2 < r1
r1 = r2q2 + r3, 0 6 r3 < r2
r2 =

...

r3q3 + r4, 0 6 r4 < r3

rn¡2 = rn¡1qn¡1 + rn, 0 6 rn < rn¡1

rn¡1 = rnqn + 0

From the above Lemma,

gcd(a, b) = gcd(r0, r1) = gcd(r1, r2) = :::: = gcd(rn¡1, rn) = gcd(rn, 0) = rn

So, gcd(a, b) is the last non-zero remainder in the sequence of divisions.

Note that the remainder must eventually be zero since the sequence of non-negative integer remainders

r0, r1, r2, r3, .... is strictly decreasing.
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CONNECTING GCD AND LCMINVESTIGATION 5

56 NUMBER THEORY (Chapter 1)

Use the Euclidean Algorithm to find gcd(945, 2415). Hence find two integers r and s such that

gcd(945, 2415) = 945r + 2415s.

Successive divisions give 2415 = 945(2) + 525

945 = 525(1) + 420

525 = 420(1) + 105

420 = 105(4)

Hence gcd(945, 2415) = 105.

We now work backwards, substituting the remainder at each stage:

105 = 525 ¡ 420

= 525 ¡ (945 ¡ 525)

= 525 £ 2 ¡ 945

= (2415 ¡ 945(2)) £ 2 ¡ 945

= 2415 £ 2 ¡ 4 £ 945 ¡ 945

= 2415 £ 2 ¡ 5 £ 945

) two such integers are r = ¡5 and s = 2.

LEAST COMMON MULTIPLE

The least common multiple (lcm) of positive integers a and b, denoted lcm(a, b), is the positive

integer m satisfying: (1) a j m and b j m
(2) if a j c and b j c where c > 0, then m 6 c.

For example, the least common multiple of 6 and 8 is 24.

Consider a, b 2 Z +.

The purpose of this investigation is to find a relationship between gcd(a, b) and lcm(a, b).

What to do:

1 For each pair of positive integers a, b which follows, find:

i gcd(a, b) ii lcm(a, b) iii a £ b

a 70, 120 b 37, 60 c 108, 168 d 450, 325

2 Postulate a result which connects gcd(a, b) and lcm(a, b).

Theorem:

For positive integers a and b, gcd(a, b) £ lcm(a, b) = ab.

Example 24

r s
r = 41

s = -16

and are not necessarily

unique. For example, ,

is another solution.

Note that for any positive integers a and b, lcm(a, b) 6 ab.
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NUMBER THEORY (Chapter 1) 57

Proof:

Let d = gcd(a, b)

) d j a and d j b and d > 1.

) a = dr and b = ds for r, s 2 Z +

Suppose m =
ab

d
.

) m =
(dr)b

d
and m =

a(ds)

d
) m = br and m = as

) m is a positive common multiple of a and b.

Now let c be any positive integer multiple of a and b.

) c = au and c = bv for some u, v 2 Z + .... (1)

Since d = gcd(a, b), there exist x, y 2 Z such that d = ax + by

)
c

m
=

cd

ab
=

c(ax+ by)

ab
=
³
c

b

´
x +

³
c

a

´
y

= vx + uy fusing (1)g
) c = (vx + uy)m

) m j c
) m 6 c

) m = lcm(a, b)

Corollary:

For positive integers a and b, lcm(a, b) = ab , gcd(a, b) = 1

EXERCISE 1D.2

1 For each of the following integer pairs a, b, use the Euclidean Algorithm to find gcd(a, b), and

hence find integers r and s such that gcd = ra + sb.

a 803, 154 b 12 378, 3054 c 3172, 793

d 1265, 805 e 55, 34

2 Suppose fj is the jth Fibonacci number.

a Find gcd(fn+1, fn).

b i Find gcd(f4(n+1), f4n) for n = 1, 2, 3, 4.

ii Postulate and prove a formula for gcd(f4(n+1), f4n) which is true for all n 2 Z +.

c Postulate and prove a formula for gcd(f5(n+1), f5n) which is true for all n 2 Z +.

3 Find the gcd and lcm of:

a 143, 227 b 272, 1749 c 3054, 12 378 d 267, 1121

4 Prove the corollary: For positive integers a and b, lcm(a, b) = ab , gcd(a, b) = 1.
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58 NUMBER THEORY (Chapter 1)

THE LINEAR DIOPHANTINE EQUATION ax+ by = c

A Diophantine equation is a polynomial equation that allows two or more variables to take integer

values only.

Pythagorean triples, and its generalisation to higher dimensions as in Fermat’s last theorem,

an + bn = cn.

In this section we apply the Euclidean Algorithm to the simplest of all Diophantine equations, the linear

Diophantine equation ax + by = c where a, b, c 2 Z are constants, and x, y 2 Z are the variables.

Linear Diophantine equations are always to be solved (or proved insolvable) in the integers or sometimes

in just the positive integers. There are two variables (x and y) in the equation, and there are either an

infinite number of solutions in Z , or none.

For example:

² 3x + 6y = 18 has an infinite number of solutions in the integers

²
Theorem:

Suppose a, b, c 2 Z , and let d = gcd(a, b).

(1) ax + by = c has solutions , d j c.
(2) If x0, y0 is any particular solution, all solutions are of the form

x = x0 +
³
b

d

´
t, y = y0 ¡

³
a

d

´
t where t 2 Z .

Proof:

(1) ( ) ) d = gcd(a, b) ) d j a and d j b
) a = dr and b = ds for some integers r and s

Now if x = x0 and y = y0 is a solution of ax + by = c then ax0 + by0 = c

) c = ax0 + by0 = drx0 + dsy0 = d(rx0 + sy0)

) d j c
( ( ) If d j c then c = dt for some integer t .... (1)

Now since d = gcd(a, b), there exist x0, y0 2 Z such that d = ax0 + by0.

Multiplying by t gives dt = (ax0 + by0)t

) c = a(x0t) + b(y0t) fusing (1)g
Hence ax + by = c has a particular solution x = tx0, y = ty0.

(2) x0, y0 is a known solution of ax + by = c, so ax0 + by0 = c.

If x0, y0 is another solution then ax0 + by0 = c = ax0 + by0

) a(x0 ¡ x0) = b(y0 ¡ y0) .... (1)

Since d = gcd(a, b), there exist integers r and s which are relatively prime with a = dr and

b = ds.

) dr(x0 ¡ x0) = ds(y0 ¡ y0)

) r(x0 ¡ x0) = s(y0 ¡ y0)

) r j s(y0 ¡ y0) with gcd(r, s) = 1 .... (2)

The most famous Diophantine equations are the Pythagorean equations whose integer solutions are the

2x + 10y = 17 has none at all, since 2x + 10y is even for all x, y 2 Z , whereas 17 is odd.
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NUMBER THEORY (Chapter 1) 59

Now Euclid’s Lemma states that if a j bc and gcd(a, b) = 1, then a j c.
) from (2), r j (y0 ¡ y0)

) y0 ¡ y0 = rt for some t 2 Z

) y0 = y0 ¡ rt

Substituting into (1), a(x0 ¡ x0) = b(¡rt)

) dr(x0 ¡ x0) = ds(¡rt)

) x0 ¡ x0 = ¡st

) x0 = x0 + st

So, x0 = x0 + st and y0 = y0 ¡ rt

) x0 = x0 +
³
b

d

´
t and y0 = y0 ¡

³
a

d

´
t, t 2 Z

Checking the solution for any t 2 Z :

ax + by = a
³
x0 +

³
b

d

´
t
´

+ b
³
y0 ¡

³
a

d

´
t
´

= ax0 +
abt

d
+ by0 ¡ abt

d
= ax0 + by0 = c X

) the given solutions constitute all, infinitely many, solutions.

Graphically, the theorem takes this form:

The equation ax+by = c is that of a straight line with

gradient ¡a

b
.

Since gcd(a, b) j c, c is a multiple of d = gcd(a, b).

) there exists an integer pair solution (x0, y0) on

this line.

The general solution is obtained by moving the

horizontal distance
b

d
(an integer) to the right, then

moving downwards the vertical distance ¡a

d
(also an

integer) back to the line.

Thus all of solutions are integer pairs (x, y).

Solve 172x + 20y = 1000 for x, y in: a Z b Z +.

a We first find gcd(172, 20) using the Euclidean Algorithm.

) gcd(172, 20) = 4

Now 4 j 1000, so integer solutions exist.

We now need to write 4 as a linear combination of 172 and 20.

Example 25

y

x

b

d

¡a

d

(x y )0 0,

172 = 20(8) + 12

20 = 12(1) + 8

12 = 8(1) + 4

8 = 4(2)
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60 NUMBER THEORY (Chapter 1)

Working backwards: 4 = 12 ¡ 8

= 12 ¡ (20 ¡ 12)

= 2 £ 12 ¡ 20

= 2(172 ¡ 20(8)) ¡ 20

= 2 £ 172 ¡ 17 £ 20

Multiplying by 250 gives 1000 = 500 £ 172 ¡ 4250 £ 20

) x0 = 500, y0 = ¡4250 is one solution pair.

All other solutions have the form x = 500 +
¡
20
4

¢
t, y = ¡4250 ¡ ¡1724 ¢ t,

which is, x = 500 + 5t, y = ¡4250 ¡ 43t, t 2 Z .

b If x and y are in Z + we need to solve for t 2 Z such that:

500 + 5t > 0 and ¡4250 ¡ 43t > 0

) 5t > ¡500 and 43t < ¡4250

) t > ¡100 and t < ¡98:33::::

) t = ¡99

) x = 500 + 5(¡99) and y = ¡4250 ¡ 43(¡99)

) x = 5 and y = 7 is the unique solution for which x, y 2 Z +.

Corollary:

If gcd(a, b) = 1 and if x0, y0 is a particular solution of ax+ by = c, then all solutions are given

by x = x0 + bt, y = y0 ¡ at, t 2 Z .

Linear Diophantine equations often are observed in word puzzles, as in the following example.

A cow is worth 10 pieces of gold, a pig is worth 5 pieces

of gold, and a hen is worth 1 piece of gold. 220 gold

pieces are used to buy a total of 100 cows, pigs, and

hens.

How many of each animal is bought?

Let the number of cows be c, the number of pigs be p, and the number of hens be h.

) c + p + h = 100 fthe total number of animalsg
and 10c + 5p + h = 220 fthe total number of gold piecesg
Subtracting these equations gives 9c + 4p = 120 where gcd(9, 4) = 1.

By observation, c0 = 0 and p0 = 30 is one solution pair.

) c = 0 + 4t and p = 30 ¡ 9t, t 2 Z is the general solution,

which is, c = 4t, p = 30 ¡ 9t, h = 100 ¡ p ¡ c = 70 + 5t.

Example 26
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NUMBER THEORY (Chapter 1) 61

But c, p, and h are all positive

) 4t > 0 and 30 ¡ 9t > 0 and 70 + 5t > 0

) t > 0 and t < 30
9 and t > ¡70

5

) 0 < t < 3:33 where t 2 Z .

So, there are three possible solutions, corresponding to t = 1, 2, or 3. These are:

fc = 4, p = 21, h = 75g or fc = 8, p = 12, h = 80g or fc = 12, p = 3, h = 85g

EXERCISE 1D.3

1 Find, where possible, all x, y 2 Z such that:

a 6x + 51y = 22 b 33x + 14y = 115 c 14x + 35y = 93

d 72x + 56y = 40 e 138x + 24y = 18 f 221x + 35y = 11

2 Find all positive integer solutions of:

a 18x + 5y = 48 b 54x + 21y = 906 c 123x + 360y = 99

d 158x ¡ 57y = 11

3 Two positive numbers add up to 100. One number is divisible by 7, and the other is divisible by 11.

Find the numbers.

4 There are a total of 20 men, women, and children at a party.

Each man has 5 drinks, each woman has 4 drinks, and each child has 2 drinks. They have 62 drinks

in total. How many men, women, and children are at the party?

5 I wish to buy 100 animals. Cats cost me E50 each, rabbits

cost E10 each, and fish cost 50 cents each. I have E1000
to spend, and buy at least one of each animal.

If I spend all of my money on the purchase of these

animals, how many of each kind of animal do I buy?

6 The cities A and M are 450 km apart. Smith travels

from A to M at a constant speed of 55 km h¡1, and his

friend Jones travels from M to A at a constant speed of

60 km h¡1. When they meet, they both look at their

watches and exclaim: “It is exactly half past the hour,

and I started at half past!”. Where do they meet?

7 A person buys a total of 100 blocks of chocolate. The blocks are available in three sizes, which

cost $3:50 each, $4 for three, and 50 cents each respectively. If the total cost is $100, how many

blocks of each size does the person buy?
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62 NUMBER THEORY (Chapter 1)

An integer p is a prime number (or prime) if p > 1, and if the only

positive numbers which divide p are 1 and p itself.

An integer greater than 1 that is not prime is said to be composite.

We have already proven that there are an infinite number of primes, but

they appear to not follow any pattern. It would be very useful to discover

an efficient method for finding prime numbers, because at present no

such method exists. This is in fact the basis of the RSA encription

system by which international financial and security transactions are

protected. The study of number theory is therefore a highly important

and applicable area of study. The basis of the RSA encryption system

is a suitable topic for an Extended Essay in Mathematics.

Euclid’s Lemma for primes

For integers a and b and prime p, if p j ab then either p j a or p j b.

Proof: If p j a the proof is complete, so suppose p j= a.

Since p j= a and p is prime, gcd(a, p) = 1.

) there exist integers r and s such that ar + ps = 1.

) b = b £ 1 = b(ar + ps) = abr + bps

But p j ab, so ab = kp for some integer k

) b = kpr + bps = p(kr + bs)

) p j b.
So, either p j a or p j b.

Lemma: If p is a prime and p j a1a2a3::::an for a1, a2, a3, ...., an 2 Z

then there exists i where 1 6 i 6 n such that p j ai.

For example, if p j 6 £ 11 £ 24 then p j 6 or p j 11 or p j 24. At least one of 6, 11, and 24 must

be a multiple of p.

Proof: (By Induction)

PRIME NUMBERSE

1 is neither prime

nor composite.

It is possible that

.p a p bj jand

(1) If n = 1 then p j a1. ) P1 is true.

(2) If Pk is true, then p j a1a2a3::::ak ) p j ai for some i where 1 6 i 6 k.

Now if p j a1a2a3::::akak+1 then p j (a1a2a3::::ak)ak+1

) p j a1a2a3::::ak or p j ak+1

) p j ai for some i in 1 6 i 6 k, or p j ak+1

) p j ai for some i in 1 6 i 6 k + 1

Thus P1 is true, and Pk+1 is true whenever Pk is true.

) Pn is true. fPrinciple of Mathematical Inductiong

fusing Euclid’s Lemma for primesg
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Check this result by listing

all factors in a systematic

way. For example:

,

, ....

24

2 3 5
2 3 5

0 0 0

2 1 0

£ £
£ £

NUMBER THEORY (Chapter 1) 63

THE FUNDAMENTAL THEOREM OF ARITHMETIC

Every positive integer greater than 1 is either prime, or is expressible uniquely (up to the ordering) as

a product of primes.

Proof:

Existence: Let S be the set of positive integers which cannot be written as a product of primes,

and suppose S is non-empty.

By the Well Ordered Principle, S has a smallest number, which we will call a.

If the only factors of a are a and 1 then a is a prime, which is a contradiction.

) we can write a as the product of factors a = a1a2 where 1 < a1 < a, 1 < a2 < a.

Neither a1 nor a2 are in S, since a is the smallest member of S.

) a1 and a2 can be factorised into primes: a1 = p1p2p3::::pr and a2 = q1q2q3::::qs.

) a = a1a2 = (p1p2p3::::pr)(q1q2q3::::qs)

) a =2 S, which is a contradiction. Therefore S is empty, and every positive integer

greater than 1 is either prime, or is expressible as a product of primes.

Uniqueness: Suppose an integer n > 2 has two different factorisations

n = p1p2p3::::ps = q1q2q3::::qt where pi 6= qj for all i, j.

By Euclid’s Lemma for primes, p1 j qj for some j.

) p1 = qj fas these are primesg
Relabelling qj as q1 if necessary, we can instead write p1 = q1

)
n

p1
= p2p3p4::::ps = q2q3q4::::qt

By the same reasoning, relabelling if necessary, p2 = q2 and

n

p1q1
= p3p4::::ps = q3q4::::qt

This can be done for all pj , showing that s 6 t.

The same argument could be made swapping ps and qs, so t 6 s also.

) s = t, the pis are a rearrangement of the qjs, and the prime factorisation is unique

up to the ordering of the primes.

Discuss the prime factorisation of 360, including how many factors 360 has.

2 360

2 180

2 90

3 45

3 15

5

360 = 23 £ 32 £ 51 and this factorisation is unique up to the ordering of the

factors.

The only prime factors of 360
are 2, 3, and 5.

Including 1 and 360, 360 has

(3 + 1)(2 + 1)(1 + 1)

= 4 £ 3 £ 2

= 24 factors.

Example 27
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64 NUMBER THEORY (Chapter 1)

Finally, we present a theorem that can be used to reduce the work in identifying whether a given integer, n,

is prime. In it we show that we need only attempt to divide n by all the primes p 6
p
n. If none of

these is a divisor, then n must itself be prime.

Theorem:

If n 2 Z + is composite, then n has a prime divisor p such that p 6
p
n.

Proof:

Let n 2 Z + be composite.

) n = ab where a, b 2 Z + such that n > a > 1 and n > b > 1.

If a >
p
n and b >

p
n, then ab > n, which is a contradiction.

) at least one of a or b must be 6
p
n.

Without loss of generality, suppose a 6
p
n.

Since a > 1, there exists a prime p such that p j a. fFundamental Theorem of Arithmeticg
But a j n, so p j n. fp j a and a j n ) p j ng
Since p 6 a 6

p
n, n has a prime divisor p such that p 6

p
n.

EXERCISE 1E

1 Determine which of the following are primes:

a 143 b 221 c 199 d 223

2 Prove that 2 is the only even prime.

3 Which of the following repunits is prime?

a 11 b 111 c 1111 d 11 111

4 Show that if p and q are primes and p j q, then p = q.

5 28 £ 34 £ 72 is a perfect square. It equals (24 £ 32 £ 7)2.

a Prove that:

i all the powers in the prime-power factorisation of n 2 Z + are even , n is a square

ii given n 2 Z +, the number of factors of n is odd , n is a square.

b Hence prove that
p

2 is irrational.

6 a Prove that if a, n 2 Z +, n > 2 and an ¡ 1 is prime,

then a = 2.

Hint: Consider 1 + a + a2 + :::: + an¡1 and its sum.

b It is claimed that 2n ¡ 1 is always prime for n > 2.

Is the claim true?

c It is claimed that 2n ¡ 1 is always composite for n > 2.

Is the claim true?

d If n is prime, is 2n¡1 always prime? Explain your answer.

Primes of the form

are called .

2 - 1n

Mersenne primes
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RESEARCH

There are also infinitely many

primes of the form ,

but the proof is beyond the

scope of this course.

4n + 1

NUMBER THEORY (Chapter 1) 65

7 Find the prime factorisation of:

a 9555 b 989 c 9999 d 111 111

8 Which positive integers have exactly:

a three positive divisors b four positive divisors?

9 a Find all prime numbers which divide 50!

b How many zeros are at the end of 50! when written as an integer?

c Find all n 2 Z such that n! ends in exactly 74 zeros.

10 Given that p is prime, prove that:

a p j an ) pn j an b p j a2 ) p j a c p j an ) p j a
11 There are infinitely many primes, and 2 is the only even prime.

a Explain why the form of odd primes can be 4n + 1 or 4n + 3.

b Prove that there are infinitely many primes of the form 4n + 3.

12 The Fermat primes are primes of the form 22
n

+ 1.

a Find the first four Fermat primes.

b Fermat conjectured that all such numbers were prime whenever n was prime. By examining

the case n = 5, show that Fermat was incorrect.

² The first two perfect numbers are 6 and 28. Research how these numbers are connected to the

Mersenne primes of the form 2n ¡ 1.

² The repunits Rk are prime only if k is prime, and even then only rarely. Thus far, the only

prime repunits discovered are R2, R19, R23, R317, and R1031.

Research a proof that a repunit Rk may only be prime if k is prime.
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66 NUMBER THEORY (Chapter 1)

of sciences and the theory of numbers is the queen of mathematics”. Gauss was responsible for the

development of the theory of congruences.

Suppose m 2 Z +.

Two integers a and b are congruent modulo m , m j (a ¡ b). We write a ´ b (modm).

If m j= (a ¡ b), then a is incongruent (or not congruent) to b modulo m. We write a 6´ b (modm).

For example, 64 ¡ 7 = 57 = 3 £ 19, so 3 j (64 ¡ 7).

) 64 ´ 7 (mod 3).

We observe that 7 and 64 have the same remainder when divided by 3.

7 = 3 £ 2 + 1

64 = 3 £ 21 + 1

We have therefore, for m 2 Z +:

a ´ b (modm) , m j (a ¡ b)

, there exists k 2 Z such that a = b + km.

For example:

² 37 ´ 2 (mod5) as 37 ¡ 2 = 35 is divisible by 5.

² 43 ´ 1 (mod7) as 43 ¡ 1 = 42 is divisible by 7.

² a ´ 0 (mod7) , a = 7t, t 2 Z , a is a multiple of 7.

Note that in modulo algebra, if 2x ´ 3 (mod5) then x 6= 1:5 . In fact, x = 4 is one solution, and

all other solutions have the form x = 4 + 5k, k 2 Z .

For m 2 Z +, congruence modulo m is an equivalence relation since it has the following three

properties:

Reflexive: If a 2 Z then a ´ a (modm).

Symmetric: If a, b 2 Z with a ´ b (modm) then b ´ a (modm).

Transitive: If a, b, c 2 Z with a ´ b (modm) and b ´ c (modm) then a ´ c (modm).

Proof:

For any fixed m 2 Z +:

Reflexive: m j (a ¡ a) ) a ´ a (modm) for all a 2 Z .

Symmetric: a ´ b (modm)

, m j (a ¡ b)

, m j (b ¡ a)

, b ´ a (modm).

CONGRUENCESF

The German mathematician Carl Friedrich Gauss is often quoted as saying “Mathematics is the queen
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NUMBER THEORY (Chapter 1) 67

Transitive: If a ´ b (modm) and b ´ c (modm) then m j (a ¡ b) and m j (b ¡ c)

) m j [(a ¡ b) + (b ¡ c)] flinearityg
) m j (a ¡ c)

) a ´ c (modm).

Since congruence modulo m is reflexive, symmetric, and transitive, it is an equivalence relation.

Suppose m 2 Z +. The m residue classes modulo m are the following subsets of Z :

[0] = fmultiples of mg
[1] =

...

fintegers which have remainder 1 on division by mg

[m ¡ 1] = fintegers which have remainder (m ¡ 1) on division by mg
For a 2 Z , if a has remainder r on division by m, we say r is the residue of a modulo m.

Theorem:

For m 2 Z +, a, b 2 Z , and r 2 f0, 1, 2, ...., m ¡ 1g:

(1) a ´ r (modm) , a has remainder r on division by m , a 2 [r].

(2) a ´ b (modm) , a and b have the same remainder on division by m

, a and b belong to the same residue class modulo m.

Proof: (1) a ´ r (modm) , a = r + km and 0 6 r 6 m ¡ 1 , a 2 [r].

(2) a ´ b (modm) , m j (a ¡ b)

, a = b + km for some k 2 Z .

By the Division Algorithm, a = mq1 + r1
and b = mq2 + r2

for some q1, r1, q2, r2 2 Z with 0 6 r1, r2 6 m ¡ 1.

Thus a = b + km

, mq1 + r1 = mq2 + r2 + km

, m(q1 ¡ q2 ¡ k) = r2 ¡ r1
, r2 ¡ r1 is a multiple of m

, r2 ¡ r1 = 0 since r1, r2 2 f0, 1, 2, ...., m ¡ 1g.

, a and b have the same remainder on division by m.

, a and b belong to the same residue class modulo m (by definition).

It follows that for m 2 Z :

The equivalence relation congruence modulo m has equivalence classes which are the m residue

classes modulo m.

The residue classes modulo m partition the set of integers into m disjoint subsets.

Clearly, the form of the definition of congruences a ´ b (modm) , a = b + km links neatly with

the Division Algorithm.
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MODULAR ALGEBRAINVESTIGATION 6

68 NUMBER THEORY (Chapter 1)

Consider the equation a = bm + r, where 0 6 r 6 m ¡ 1. Clearly, a ´ r (modm) and we call

r the residue of a (modm).

Generalising this to all integers, we can state that all integers are congruent to one of the possible values

of r, namely, one of the set f0, 1, 2, 3, ...., (m¡1)g. This set is called the complete system of residues

modulo m, for m 2 Z +.

MODULAR ARITHMETIC

Modular arithmetic deals with the manipulation of residues.

As a general rule, we try to reduce all integers to their least residue equivalent at all times. This simplifies

the arithmetic.

For example: 19 + 14 (mod 8)

= 3 + 6 (mod8)

= 9 (mod8)

= 1 (mod8)

19 ¡ 14 (mod8)

= 5 (mod8)

19 £ 14 (mod8)

= 3 £ 6 (mod 8)

= 18 (mod8)

= 2 (mod8)

Addition, subtraction, and multiplication (modm) are relatively straight forward. However, division is

more complicated.

For example, can you solve the equivalence equations by inspection?

² 3x ´ 4 (mod7) ² 4x ¡ 3 ´ 5 (mod 6) ² x2 ´ 3 (mod6)

Is there a unique solution to each equation?

In this Investigation we use the property that a ´ b (modm) , m j (a ¡ b) , a = b+ km for

k 2 Z , to develop rules for modular algebra.

What to do:

Prove the following results:

1 Rules for +, ¡, and £ with k, a, b, c, d 2 Z , m 2 Z +:

Given a ´ b (modm) and c ´ d (modm):

a a + c ´ b + d (modm) b a ¡ c ´ b ¡ d (modm)

c ka ´ kb (modm) d ac ´ bd (modm)

2 Condition for division (cancellation)

a If ka ´ kb (modm) and gcd(k, m) = 1, then a ´ b (modm).

b If ka ´ kb (modm) and gcd(k, m) = d, then a ´ b (mod m
d

).

3 If a ´ b (modm) then an ´ bn (modm) for all n 2 Z +.

Note: The converse is not necessarily true.

4 If f(x) is a polynomial with integer coefficients and a ´ b (modm), then

f(a) ´ f(b) (modm).
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NUMBER THEORY (Chapter 1) 69

In the Investigation you should have proven the following results:

² If a ´ b (modm) and c ´ d (modm) then:

I a § c ´ b § d (modm) I ka ´ kb (modm)

I an ´ bn (modm) I ac ´ bd (modm).

² If ka ´ kb (modm) and gcd(k, m) = d then a ´ b (mod m
d

).

² If f(x) is a polynomial with integer coefficients and a ´ b (modm), then

f(a) ´ f(b) (modm).

Find 6522 (mod 7).

65 ´ 2 (mod 7) fsince 65 ¡ 2 = 63 = 9 £ 7g
) 6522 ´ 222 (mod 7)

´ (23)7 £ 2 (mod7)

´ 1 £ 2 (mod 7) fsince 23 = 8 ´ 1g
´ 2 (mod 7)

Prove that 240 ¡ 1 is divisible by 41.

25 = 32 ´ ¡9 (mod41)

) 240 = (25)8 ´ (¡9)8 (mod 41)

But (¡9)2 = 81 ´ ¡1 (mod41)

) 240 ´ (¡1)4 (mod 41)

´ 1 (mod41)

) 240 ¡ 1 ´ 0 (mod41)

) 41 j (240 ¡ 1).

Find
50P
k=1

k! (mod 30).

We first note that 5! = 120 ´ 0 (mod30)

) k! ´ 0 (mod30) for all k > 5

)
50P
k=1

k! (mod 30) ´ 1! + 2! + 3! + 4! (mod30)

= 1 + 2 + 6 + 24 (mod30)

´ 3 (mod30)

Example 30

Example 29

Example 28

GRAPHICS
CALCULATOR

INSTRUCTIONS
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70 NUMBER THEORY (Chapter 1)

EXERCISE 1F.1

1 Determine whether the following pairs of numbers are congruent (mod 7):

a 1, 15 b ¡1, 8 c 2, 99 d ¡1, 699

2 Determine the positive integers m for which:

a 29 ´ 7 (modm) b 100 ´ 1 (modm) c 53 ´ 0 (modm) d 61 ´ 1 (modm)

3 Find:

a 228 (mod 7) b 1033 (mod 7) c 350 (mod 7) d 4123 (mod 7)

4 Find:

a 228 (mod 37) b 365 (mod 13) c 744 (mod 11)

5 Prove that:

a + 10353 is divisible by 39 b 333111 + 111333 is divisible by 7.

6 Find the remainder when 2100 + 3100 is divided by 5.

7 Find the last two digits of 20320.

8 Find:

a
50P
k=1

k! (mod 20) b
50P
k=1

k! (mod 42) c
100P
k=10

k! (mod 12) d
30P
k=4

k! (mod 10)

9 a Find:

i 510 (mod 11) ii 312 (mod 13) iii 218 (mod 19) iv 716 (mod 17)

b Use your results from a to formulate a conjecture.

c Find:

i 411 (mod 12) ii 58 (mod 9) iii

d Use your results from c to give conditions under which your conjecture in b is valid.

10 a Find:

i 2! (mod 3) ii 4! (mod 5)

iii 10! (mod 11) iv 6! (mod 7)

b Use your results from a to postulate a theorem.

c Find:

i 3! (mod 4) ii 5! (mod 6)

d Use your results from c to give conditions

under which your theorem in b is valid.

11 Prove that:

a 7 j (52n + 3 £ 25n¡2) b 13 j (3n+2 + 42n+1) c 27 j (5n+2 + 25n+1)

12 Prove that an integer is divisible by 3 if and only if the sum of its digits is divisible by 3.

13 Prove that:

a the square of any even integer ´ 0 (mod 4)

b the square of any odd integer ´ 1 (mod 4)

c the square of any integer ´ 0 or 1 (mod3)

d the cube of any integer ´ 0 or 1 or 8 (mod9).

The proof of this result is linked

with properties of the cyclic

group , ,

prime, studied in the option

.

f n f g £ gZ p p0 p

Sets, Relations, and Groups

53103

3310 (mod 11) iv 3416 (mod 17)
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NUMBER THEORY (Chapter 1) 71

14 a Prove that the square of any odd integer ´ 1 (mod8).

b Comment on the squares of even integers (mod 8).

15 Suppose a, b, c 2 Z + such that a ´ b (mod c). Show that gcd(a, c) = gcd(b, c), and interpret

this result.

16 a Solve the congruence: i x2 ´ 1 (mod3) ii x2 ´ 4 (mod7).

b Suppose x2 ´ a2 (mod p) where x, a 2 Z and p is prime. What can you deduce about the

relationship between x and a?

17 a Show that if n is an odd positive integer, then
nP

k=1

k ´ 0 (modn).

b Determine what happens if n is even.

18 By considering n having each of the forms n = 4m+ r for r = 0, 1, 2, 3, determine conditions

under which
n¡1P
k=1

k3 ´ 0 (modn). Hint:
nP

i=1

i3 =
h
n

2
(n + 1)

i2
19 For which positive integers n is

nP
k=1

k2 ´ 0 (modn)?

20 a Prove by induction that for n 2 Z +:

i 3n ´ 1 + 2n (mod 4) ii 4n ´ 1 + 3n (mod 9) iii 5n ´ 1 + 4n (mod 16)

b Prove a general result of the cases in a.

21 Prove that the eleventh Mersenne number 211 ¡ 1 is divisible by 23, and thus not prime.

CANCELLATION IN CONGRUENCES

In Investigation 6 we saw that for m 2 Z +, a, b, c 2 Z , if a ´ b (modm) then ca ´ cb (modm).

The converse of this result only holds in particular cases.

Theorem:

If ca ´ cb (modm) and gcd(c, m) = d, then a ´ b (mod m
d

).

Proof:

ca ´ cb (modm) ) ca = cb + km for some k 2 Z

Since gcd(c, m) = d, there exist relatively prime r and s such that c = rd and m = sd.

) rda = rdb + ksd

) ra = rb + ks

) r(a ¡ b) = ks

) s j r(a ¡ b) where r, s are relatively prime

) s j (a ¡ b) fEuclid’s Lemmag

Thus a ¡ b = ts = t
³
m

d

´
for some t 2 Z .

) a ´ b
¡
mod m

d

¢
.
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72 NUMBER THEORY (Chapter 1)

The consequences of this theorem are:

² A common factor c in a congruence can be cancelled if c and the modulus m are relatively prime:

If ca ´ cb (modm) and gcd(c, m) = 1, then a ´ b (modm).

² If ca ´ cb (mod p) and p j= c and p is prime, then a ´ b (mod p).

Notice that: ² ab ´ 0 (modn) may occur without a ´ 0 (modn) or b ´ 0 (modn).

For example, 4 £ 3 = 0 (mod12), but 4 6´ 0 (mod 12) and 3 6´ 0 (mod12).

² If ab ´ 0 (modn) and gcd(a, n) = 1, then b ´ 0 (modn)

using the first consequence above.

² If ab ´ 0 (mod p) where p is prime, then a ´ 0 (mod p) or b ´ 0 (mod p)

using the second consequence above.

a Use 33 ´ 15 (mod9) to explain why 11 ´ 5 (mod3).

b Use ¡35 ´ 45 (mod 8) to explain why ¡7 ´ 9 (mod 8).

a 33 ´ 15 (mod 9)

that is, 11 £ 3 ´ 5 £ 3 (mod9)

and gcd(3, 9) ´ 3

) 11 ´ 5 (mod 9
3)

that is, 11 ´ 5 (mod3)

b ¡35 ´ 45 (mod 8)

that is, ¡7 £ 5 ´ 9 £ 5 (mod8)

and gcd(5, 8) = 1

) ¡7 ´ 9 (mod8)

LINEAR CONGRUENCES

Linear congruences are equations of the form ax ´ b (modm), where m 2 Z +, a, b 2 Z .

In this section we develop the theory for finding the solution of these equations.

Suppose x = x0 is a solution of ax ´ b (modm), so ax0 = b (modm).

) ax0 = b + y0m for some y0 2 Z .

Thus, solving a linear congruence is equivalent to solving a linear Diophantine equation, except that there

are not infinitely many solutions, but rather at most m solutions when working modulo m.

Our goal is to obtain all incongruent solutions to ax ´ b (modm) as all congruent solutions are

considered to be the same.

For example: Consider the equation 4x ´ 8 (mod12)

x = 2, x = ¡10, and x = 14 represent the same solution, since

2 ´ ¡10 ´ 14 (mod 12)

x = 2, x = 5, x = 8, and x = 11 are the distinct solutions modulo

So, 4x ´ 8 (mod12) ) x = 2, 5, 8, or 11.

Theorem:

ax ´ b (modm) has a solution , d j b where d = gcd(a, m), and in this case the equation has

d mutually incongruent solutions modulo m.

Example 31

.

12.
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NUMBER THEORY (Chapter 1) 73

Proof:

ax ´ b (modm) is equivalent to solving the linear Diophantine equation ax ¡ my = b.

Let d = gcd(a, m) and note that gcd(a, m) = gcd(a, ¡m).

Hence d j b is the necessary and sufficient condition for a solution to exist. fsee the earlier work

on Diophantine equationsg

) if x0, y0 is a solution then all solutions are of the form x = x0 +
³
m

d

´
t, y = y0 +

³
a

d

´
t,

t 2 Z .

If t = 0, 1, 2, 3, ...., (d ¡ 1) we obtain the solutions

x = x0, x0 +
³
m

d

´
, x0 + 2

³
m

d

´
, x0 + 3

³
m

d

´
, ...., x0 + (d ¡ 1)

³
m

d

´
, respectively. .... ( ¤ )

We now claim that these integers are incongruent modulo m, and any other solution is equivalent to

one of these given solutions.

Suppose two of these solutions are equal, so x0 +
³
m

d

´
t1 ´ x0 +

³
m

d

´
t2 (modm) where

0 6 t1 < t2 6 (d ¡ 1)

)
³
m

d

´
t1 ´

³
m

d

´
t2 (modm)

Since gcd
³
m

d
, m
´

=
m

d
we can use the cancellation law to obtain t1 ´ t2 (mod d).

But t1 ´ t2 (mod d) ) d j (t2 ¡ t1) which contradicts 0 6 t1 < t2 6 (d ¡ 1) since

0 < t2 ¡ t1 6 (d ¡ 1) < d.

Thus the integers ( ¤ ) are mutually incongruent modulo m.

It remains to prove that any other solution x0 +
³
m

d

´
t is congruent (modm) to one of the d integers

in ( ¤ ). We do this by using the Division Algorithm.

If t > d or t < ¡d then t can be written as t = qd + r with 0 6 r 6 (d ¡ 1)

) x0 +
³
m

d

´
t = x0 +

³
m

d

´
(qd + r)

= x0 + mq +
³
m

d

´
r

´ x0 +
³
m

d

´
r (modm) which is one of the d selected solutions in ( ¤ ).

We conclude that:

If x0 is any solution of ax ´ b (modm), then there are d = gcd(a, m) incongruent solutions:

x = x0, x0 +
³
m

d

´
, x0 + 2

³
m

d

´
, x0 + 3

³
m

d

´
, ...., x0 + (d ¡ 1)

³
m

d

´
, where necessarily d j b.

In the special case where a and m are relatively prime:

If gcd(a, m) = 1, then ax ´ b (modm) has a unique solution modulo m for each b 2 Z .
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74 NUMBER THEORY (Chapter 1)

Solve for x:

a 2x ´ 3 (mod5) b 12x ´ 24 (mod54) c 9x ´ 15 (mod24)

a 2x ´ 3 (mod5) has gcd(2, 5) = 1

) we have a unique solution.

By inspection, x ´ 4 (mod5) fas 2 £ 4 = 8 ´ 3 (mod 5)g
b 12x ´ 24 (mod 54) has gcd(12, 54) = 6 where 6 j 24

) there are exactly 6 incongruent solutions.

Cancelling by 6 gives 2x ´ 4 (mod9)

) x ´ 2 (mod9)

) the solutions are x = 2 + ( 546 )t = 2 + 9t where t = 0, 1, 2, 3, 4, 5.

) x ´ 2, 11, 20, 29, 38, or 47 (mod54)

c 9x ´ 15 (mod 24) has gcd(9, 24) = 3 where 3 j 15

) there are exactly 3 incongruent solutions.

Cancelling by 3 gives 3x ´ 5 (mod8)

By inspection, x ´ 7 is a solution.

) the solutions are x = 7 + 8t (mod 24), where t = 0, 1, 2.

) x ´ 7, 15, or 23 (mod24)

EXERCISE 1F.2

1 Solve, if possible, the following linear congruences:

a 2x ´ 3 (mod7) b 8x ´ 5 (mod25) c 3x ´ 6 (mod12)

d 9x ´ 144 (mod99) e 18x ´ 30 (mod 40) f 3x ´ 2 (mod7)

g 15x ´ 9 (mod27) h 56x ´ 14 (mod 21)

2 Determine whether the following statements are true:

a x ´ 4 (mod7) ) gcd(x, 7) = 1

b 12x ´ 15 (mod35) ) 4x ´ 5 (mod7)

c 12x ´ 15 (mod39) ) 4x ´ 5 (mod13)

d x ´ 7 (mod14) ) gcd(x, 14) = 7

e 5x ´ 5y (mod 19) ) x ´ y (mod 19)

f 3x ´ y (mod 8) ) 15x ´ 5y (mod 40)

g 10x ´ 10y (mod 14) ) x ´ y (mod 7)

h x ´ 41 (mod37) ) x (mod 41) = 37

i x ´ 37 (mod40) and 0 6 x < 40 ) x = 37

j There does not exist x 2 Z such that 15x ´ 11 (mod 33).

Example 32
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NUMBER THEORY (Chapter 1) 75

The Chinese mathematician Sun-Tsu posed the following problem:

When divided by 3, a number leaves a remainder of 1. When divided by 5 it leaves a

remainder of 2, and when divided by 7 it leaves a remainder of 3. Find the number.

In congruence notation, we need to find x such that x ´ 1 (mod3), x ´ 2 (mod5), and x ´ 3 (mod7).

The general method of solution of such simultaneous linear congruences in different moduli is termed

the Chinese Remainder Theorem, named in honour of this problem and its Chinese heritage. To be

fair, however, similar puzzles are also found in old manuscripts on the Indian subcontinent and in Greek

manuscripts of the same era.

THE CHINESE REMAINDER THEOREM

If m1, m2, m3, ...., mr are pairwise relatively prime positive integers, then the system of congruences

x ´ a1 (modm1), x ´ a2 (modm2), x ´ a3 (modm3), ...., x ´ ar (modmr)

has a unique solution modulo M = m1m2m3::::mr.

This solution is x ´ a1M1x1 + a2M2x2 + :::: + arMrxr (modM)

where Mk =
M

mk

and xi is the solution of Mixi ´ 1 (modmi).

Proof:

Existence: Let Mk =
M

mk

= m1m2m3::::mk¡1mk+1::::mr.

Since gcd(Mk, mk) = 1, by our theory of linear congruences it is possible to solve

all r linear congruences, Mixi ´ 1 (modmi), i = 1, ...., r.

The unique solution of Mkxk ´ 1 (modmk) is denoted xk.

Observe that Mi ´ 0 (modmk) for i 6= k since mk j Mi in these cases.

Hence a1M1x1 + a2M2x2 + :::: + arMrxr ´ akMkxk (modmk)

´ ak(1) (modmk)

´ ak (modmk)

) X ´ a1M1x1 + a2M2x2 + :::: + arMrxr is a solution of

x ´ ak (modmk) for k = 1, 2, 3, ...., r

) a solution exists.

Uniqueness: Suppose X0 is any other integer which satisfies the system

) X = a1M1x1 + a2M2x2 + :::: + arMrxr ´ ak ´ X0 (modmk)

for all k = 1, 2, 3, 4, ...., r

) mk j (X ¡ X 0)

Since the moduli are relatively prime,

m1 j (X ¡ X0), m2 j (X ¡ X 0), ...., mr j (X ¡ X 0)
) m1m2m3::::mk j (X ¡ X 0)
) M j (X ¡ X0)
) X ´ X 0 (modM)

THE CHINESE REMAINDER THEOREMG
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76 NUMBER THEORY (Chapter 1)

Solve Sun-Tsu’s problem:

x ´ 1 (mod3), x ´ 2 (mod 5), x ´ 3 (mod 7)

3, 5, and 7 are pairwise relatively prime X

M = 3 £ 5 £ 7 = 105

) M1 = 105
3 = 35, M2 = 21, and M3 = 15

To find x1 we solve 35x1 ´ 1 (mod3) ) x1 = 2

To find x2 we solve 21x2 ´ 1 (mod5) ) x2 = 1

To find x3 we solve 15x3 ´ 1 (mod7) ) x3 = 1

Hence, x ´ (1)(35)(2) + (2)(21)(1) + (3)(15)(1) (mod105)

) x ´ 157 (mod105)

) x ´ 52 (mod105)

Check: 52 ´ 1 (mod 3) X 52 ´ 2 (mod5) X 52 ´ 3 (mod 7) X

So, there are infinitely many solutions, the smallest of which is x = 52. The other solutions are

x = 157, x = 209, x = 261, and so on.

Solve Sun-Tsu’s problem without using the Chinese Remainder Theorem.

The first congruence is x ´ 1 (mod3) ) x = 1 + 3t, t 2 Z

Substituting into the 2nd congruence x ´ 2 (mod5), we get

1 + 3t ´ 2 (mod 5)

) 3t ´ 1 (mod 5)

) t ´ 2 (mod 5)

) t ´ 2 + 5u, u 2 Z

Substituting into the 3rd congruence x ´ 3 (mod 7), we get

1 + 3(2 + 5u) ´ 3 (mod 7)

) 7 + 15u ´ 3 (mod 7)

) 15u ´ ¡4 (mod7)

) 15u ´ 3 (mod 7)

) u ´ 3 (mod 7)

) u ´ 3 + 7v

) x = 1 + 3t = 1 + 3(2 + 5u) = 7 + 15u = 7 + 15(3 + 7v) = 52 + 105v

) x ´ 52 (mod105)

Some congruence equations can be solved by converting to two or more simpler equations. The following

example illustrates this procedure.

Example 34

Example 33
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Solve 13x ´ 5 (mod 276).

We notice that 276 = 3 £ 4 £ 23 where 3, 4, and 23 are relatively prime.

) an equivalent problem is to find the simultaneous solution of

13x ´ 5 (mod3), 13x ´ 5 (mod 4) and 13x ´ 5 (mod 23)

) x ´ 2 (mod3), x ´ 1 (mod 4) and x ´ 11 (mod23).

Using the Chinese Remainder Theorem, M = 3 £ 4 £ 23 = 276

) M1 = 92, M2 = 69, and M3 = 12

To find x1 we solve 92x1 ´ 1 (mod3) ) x1 = 2

To find x2 we solve 69x2 ´ 1 (mod4) ) x2 = 1

To find x3 we solve 12x3 ´ 1 (mod23) ) x3 = 2

Hence, x = (2)(92)(2) + (1)(69)(1) + (11)(12)(2) ´ 701 (mod276)

´ 149 (mod276)

EXERCISE 1G

1 Solve these systems using the Chinese Remainder Theorem:

a x ´ 4 (mod11), x ´ 3 (mod7)

b x ´ 1 (mod5), x ´ 2 (mod6), x ´ 3 (mod 7)

2 When divided by 3, a positive number leaves a remainder of 2. When divided by 5 it leaves a

remainder of 3, and when divided by 7 it leaves a remainder of 2. Use the Chinese Remainder

Theorem to find the number.

3 Solve these systems using the Chinese Remainder Theorem:

a x ´ 1 (mod2), x ´ 2 (mod3), x ´ 3 (mod 5)

b x ´ 0 (mod2), x ´ 0 (mod3), x ´ 1 (mod 5), x ´ 6 (mod 7)

4 Solve these systems without using the Chinese Remainder Theorem:

a x ´ 4 (mod11), x ´ 3 (mod7)

b x ´ 1 (mod5), x ´ 2 (mod6), x ´ 3 (mod 7)

c x ´ 0 (mod2), x ´ 0 (mod3), x ´ 1 (mod 5), x ´ 6 (mod 7)

5 Solve 17x ´ 3 (mod210) by converting into simpler congruence equations and using the Chinese

Remainder Theorem.

6 Which integers leave a remainder of 2 when divided by 3, and leave a remainder of 2 when divided

by 4?

7 Find an integer that leaves a remainder of 2 when divided by either 5 or 7, but is divisible by 3.

8 Find an integer that leaves a remainder of 1 when divided by 3, and a remainder of 3 when divided

by 5, but is divisible by 4.

Example 35
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78 NUMBER THEORY (Chapter 1)

9 Colin has a bag of sweets. If the sweets were removed from the bag 2, 3, 4, 5, or 6 at a time, the

respective remainders would be 1, 2, 3, 4, and 5. However, if they were taken out 7 at a time, no

sweets would be left in the bag. Find the smallest number of sweets that may be in the bag.

10

11 a Solve the linear Diophantine equation 4x + 7y = 5 by showing that the congruences

4x ´ 5 (mod 7) and 7y ´ 5 (mod4) are equivalent to x = 3 + 7t and y = 3 + 4s

and finding the relationship between t and s.

b Use a similar method to solve: i 11x + 8y = 31 ii 7x + 5y = 13

12 Find the smallest integer a > 2 such that 2 j a, 3 j (a + 1), 4 j (a + 2), 5 j (a + 3), and

6 j (a + 4).

13 Solve the system: 2x ´ 1 (mod5), 3x ´ 9 (mod6), 4x ´ 1 (mod7), 5x ´ 9 (mod11).

Seventeen robbers stole a bag of gold coins. They divided

the coins into equal groups of 17, but 3 were left over.

A fight began over the remaining coins and one of the

robbers was killed. The coins were then redistributed, but

this time 10 were left over. Another fight broke out and

another of the robbers was killed in the conflict. Luckily,

another equal redistribution of the coins was exact. What

is the least number of coins that may have been stolen by

the robbers?
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The tests for divisibility

by and may need

to be applied repeatedly.

7 13

NUMBER THEORY (Chapter 1) 79

One application of congruences is determining when a large integer is divisible by a given prime. In this

section we will study divisibility tests for the first 16 integers.

We will write the decimal representation of an integer A as

A = (an¡1an¡2an¡3::::a1a0) = an¡110n¡1 + an¡210n¡2 + an¡310n¡3 + :::: + a1101 + a0.

If A is an integer then:

(1) 2 j A , a0 = 0, 2, 4, 6, or 8

(2) 5 j A , a0 = 0 or 5

(3) 3 j A , 3 j (an¡1 + an¡2 + an¡3 + :::: + a1 + a0)

(4) 9 j A , 9 j (an¡1 + an¡2 + an¡3 + :::: + a1 + a0)

(5) 7 j A , 7 j ((an¡1an¡2an¡3::::a2a1) ¡ 2a0)

(6) 11 j A , 11 j (a0 ¡ a1 + a2 ¡ a3 + ::::)

(7) 13 j A , 13 j ((an¡1an¡2an¡3::::a2a1) ¡ 9a0)

Proofs of some cases:

Consider the polynomial f(x) = an¡1x
n¡1 + an¡2x

n¡2 + :::: + a2x
2 + a1x + a0

(1) Since 10 ´ 0 (mod2),

f(10) ´ f(0) (mod2) fa ´ b (modm) ) f(a) ´ f(b) (modm)g
) A ´ a0 (mod 2)

) A is divisible by 2 if a0 is divisible by 2

) A is divisible by 2 if a0 = 0, 2, 4, 6, or 8.

(3) Since 10 ´ 1 (mod3),

f(10) ´ f(1) (mod3)

) A ´ an¡1 + an¡2 + :::: + a2 + a1 + a0 (mod 3)

) A is divisible by 3 , an¡1 + an¡2 + :::: + a2 + a1 + a0 is divisble by 3.

(5) Let c = (an¡1an¡2an¡3::::a2a1)

) A = 10c + a0
) ¡2A = ¡20c ¡ 2a0
) ¡2A ´ c ¡ 2a0 (mod 7)

Thus, 7 j A , 7 j ¡2A , 7 j c ¡ 2a0

(6) Since 10 ´ ¡1 (mod11),

f(10) ´ f(¡1) (mod11)

) A ´ a0 ¡ a1 + a2 ¡ a3 + a4 ¡ :::: (mod 11)

) A is divisible by 11 , a0 ¡ a1 + a2 ¡ a3 + a4 ¡ :::: is divisible by 11.

DIVISIBILITY TESTSH
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80 NUMBER THEORY (Chapter 1)

Determine whether the integer is divisible by 7:

a 259 b 2481

a 7 j 259 , 7 j (25 ¡ 2(9))

, 7 j 7

which is true, so 7 j 259

b 7 j 2481 , 7 j (248 ¡ 2(1))

, 7 j 246

, 7 j (24 ¡ 2(6))

, 7 j 12

which is not true, so 7 j= 2481

Is 12 987 divisible by 13?

13 j 12 987 , 13 j (1298 ¡ 9(7))

, 13 j 1235

, 13 j (123 ¡ 9(5))

, 13 j 78 which is true as 78 = 13 £ 6

) 12 987 is divisible by 13.

EXERCISE 1H

1

2 a Suppose A = an¡110n¡1 + an¡210n¡2 + :::: + a2102 + a110 + a0. Prove that:

i A (mod 10) = a0 ii A (mod 100) = 10a1 + a0

iii A (mod 1000) = 100a2 + 10a1 + a0

b Hence, state divisibility tests for 10, 100, 1000.

3 a Determine divisibility tests for 4 and 8.

b Postulate a divisibility test for 16.

c Find the highest power of 2 that divides:

i 201 984 ii 765 432 iii 89 375 744

iv 62 525 654 v 41 578 912 246 vi 62 525 648

4 a n (mod 10) = 0, 1, 2, 3, 4, ...., 9. Find the possible values of n2 (mod 10).

b Hence explain why 5437, 364 428, 65 852, and 96 853 are not perfect squares.

5 Claudia claimed that
nP

r=1

r! for n > 4 is never a square. Is she correct?

6 For what values of k are the repunits Rk divisible by:

a 3 b 9 c 11?

7 Determine whether either of 6994 or 6993 are divisible by: a 7 b 13

Example 37

Example 36

Let A = 187261 321 117 057.

For each of m = 2, 3, 5, 9, and 11, find A (modm) and hence determine whether A is divisible

by m. If it is not, state the value of the remainder of the division.
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NUMBER THEORY (Chapter 1) 81

8 Write a proof for the divisibility test for 13.

9 a Find a divisibility test for: i 25 ii 125

b Find the highest power of 5 that divides:

i 112 250 ii 235 555 790 iii 48 126 953 125

10 Find a divisibility test for: a 6 b 12 c 14 d 15

11 Determine whether each of these integers is divisible by 11:

a 10 763 732 b c 1 086 326 715

12 Determine whether each of these integers is divisible by 3, 9, or 11:

a 201 984 b 101 582 283 c 41 578 912 245

d 10 415 486 358

13 Consider an integer of the form n2 ¡n+7, n 2 Z . By considering different values of n, determine

the possible values of its last digit. Prove that these are the only possible values.

14 For each of the following binary numbers:

i find the highest power of 2 that divides the number

ii determine whether the number is divisible by 3.

a 101 110 101 001 b 1 001 110 101 000 c 1 010 101 110 100 100

15 For each of the following ternary (base 3) numbers:

i find the highest power of 3 that divides the number

ii determine whether the integer is divisible by 2

iii determine whether the integer is divisible by 4.

a 10 200 122 221 210 b 221 021 010 020 120 c 1 010 101 110 100 100

16 Find a divisibility test for 7 when the number is written in base 8. Generalise this result to base n.

17 Find a divisibility test for 9 when the number is written in base 8. Generalise this result to base n.

18 A positive integer X has a base 25 representation given by (xnxn¡1::::x0)25.

a Show that X is divisible by 5 if x0 is divisible by 5.

b Show that X is divisible by 2 if the sum of its digits (in base 25) is even.

c Without using a conversion to base 10, determine whether or not (664 089 735)25 is divisible

by 20.

8 924 310 064 538
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HISTORICAL NOTE

82 NUMBER THEORY (Chapter 1)

Fermat’s Little Theorem states:

If p is a prime and p j= a then ap¡1 ´ 1 (mod p).

For example, if a = 8 and p = 5, then 84 ´ 1 (mod 5)

which is true as 84 ´ 4096.

Proof:

Consider these multiples of a: a, 2a, 3a, 4a, ...., (p ¡ 1)a

Suppose any two of them are congruent modulo p, so

ka ´ la (mod p) for 1 6 k < l 6 p ¡ 1.

Since p is prime we can cancel, so k ´ l (mod p), a contradiction.

Thus no two of the multiples are congruent modulo p, and none are congruent to 0.

) a, 2a, 3a, 4a, ...., (p ¡ 1)a are pairwise incongruent modulo p and so they must be congruent, in

some order, to the system of least residues modulo p: 1, 2, 3, 4, ...., (p ¡ 1).

Thus, a(2a)(3a)(4a)::::(p ¡ 1)a ´ (1)(2)(3)(4)::::(p ¡ 1) (mod p)

) ap¡1(p ¡ 1)! ´ (p ¡ 1)! (mod p)

Now since p j= (p ¡ 1)!, p being prime, we can cancel by (p ¡ 1)!

) ap¡1 ´ 1 (mod p)

Corollary:

If p is a prime then ap ´ a (mod p) for any integer a.

FERMAT’S LITTLE THEOREMI

Pierre de Fermat corresponded on number theory with (amongst

others) Marin Mersenne and Bernard Frénicle, and it was usually

one of these who coaxed from the rather secretive Fermat some of

his most closely held results. Frénicle is responsible for bringing

Fermat’s Little Theorem to notice.

Fermat communicated his result in 1640, stating also, “I would send

you the demonstration, if I did not fear it being too long”, a comment

reminiscent of that about his Last Theorem. Fermat’s unwillingness

to provide proofs for his assertions was quite common. Sometimes

he had a proof, other times not.

Leonhard Euler published the first proof of the Little Theorem

in 1736, however Gottfried Leibniz (little recognised for his

contributions to Number Theory due to his lack of desire to publish)

left an identical argument in a manuscript dated prior to 1683.
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NUMBER THEORY (Chapter 1) 83

Proof: If p j a, then a ´ 0 (mod p) and ap ´ 0p (mod p)

) ap ´ a (mod p)

If p j= a, then by Fermat’s Little Theorem

ap¡1 ´ 1 (mod p)

) aap¡1 ´ a (mod p)

) ap ´ a (mod p)

Find the value of 3152 (mod 11).

Since 11 is prime, and 310 ´ 1 (mod11) fFLTg
) 3152 = (310)15 £ 32 ´ 115 £ 9 ´ 9 (mod 11)

) 3152 (mod 11) ´ 9

Fermat’s Little Theorem also allows us to solve linear congruences of the form ax ´ b (mod p) where

p is prime.

Notice that: if ax ´ b (mod p) then

) ap¡2ax ´ ap¡2b (mod p)

) ap¡1x ´ ap¡2b (mod p)

) x ´ ap¡2b (mod p) fFLTg

Suppose ax ´ b (mod p) where p is prime. If p j= a, then x ´ ap¡2b (mod p) is the unique

solution modulo p.

Solve for x: 5x ´ 3 (mod 11)

5x ´ 3 (mod11) where p = 11 is prime, a = 5, b = 3

Since p j= a, the unique solution is

x ´ 59 £ 3 (mod 11)

) x ´ (52)4 £ 15 (mod11)

) x ´ 34 £ 4 (mod 11) f52 = 25 ´ 3 (mod11)g
) x ´ 33 £ 12 (mod11)

) x ´ 5 £ 1 (mod11)

) x ´ 5 (mod11)

A further use of Fermat’s Little Theorem is in determining whether an integer is not a prime.

The contrapositive of FLT “p prime ) ap ´ a (mod p) for any a” is:

If an 6´ a (modn) for any a 2 Z ) n is not prime.

Example 39

Example 38
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84 NUMBER THEORY (Chapter 1)

Test whether 123 is prime.

We minimise computation by using a = 2.

Now 2123 = (27)17 £ 24 f27 = 128 is close to 123g
) 2123 ´ 51724 (mod 123) f27 = 128 ´ 5 (mod 123)g
) 2123 ´ (53)55224 (mod 123) f53 = 125 is close to 123g
) 2123 ´ 255224 (mod 123) f53 = 125 ´ 2 (mod 123)g
) 2123 ´ 27 £ 22 £ 52 (mod 123)

) 2123 ´ 5 £ 22 £ 52 (mod 123) fusing 27 ´ 5 (mod 123)g
) 2123 ´ 53 £ 22 (mod 123)

) 2123 ´ 2 £ 22 (mod 123) fusing 53 ´ 2 (mod 123)g
) 2123 ´ 23 (mod 123)

) 2123 ´ 8 (mod 123)

Since 2123 6´ 2 (mod123), 123 is not prime.

Note that the converse of Fermat’s Little Theorem is false, since if an¡1 ´ 1 (modn) for all a 2 Z

with gcd(a, n) = 1, then n need not be prime.

There exist numbers called Carmichael numbers which are composite and such that an¡1 ´ 1 (modn)

for all integers a such that gcd(a, n) = 1.

For example, n = 561 = 17 £ 33 is a Carmichael number.

EXERCISE 1I

1 Use Fermat’s Little Theorem to find the value of:

a 5152 (mod 13) b 456 (mod 7) c 8205 (mod 17) d 395 (mod 13)

2 Use FLT to solve:

a 3x ´ 5 (mod7) b 8x ´ 3 (mod 13) c 7x ´ 2 (mod11) d 4x ´ 3 (mod 17)

3 Use the method given in Example 40 to test whether the following numbers are prime:

a b c 29

4 Show directly that 310 ´ 1 (mod11).

5 Use FLT to find the remainder of 13133 + 5 on division by 19.

6 Use FLT to determine whether 11204 + 1

7 Deduce by the Little Theorem that:

a 17 j (1316n+2 + 1) for all n 2 Z + b 13 j (912n+4 ¡ 9) for all n 2 Z +.

8 Find the units digit of 7100.

Example 40

63 117

is divisible by: a 13 b 17

In most cases it is

quicker to divide

by all primes .

n
~`n6
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NUMBER THEORY (Chapter 1) 85

9 a Let p be prime and gcd(a, p) = 1. Use the Little Theorem to verify that x ´ ap¡2b (mod p)

is a solution of the linear congruence ax ´ b (mod p).

b Hence solve these systems of simultaneous congruences:

i

ii

10 Use the Little Theorem to prove that if p is an odd prime, then:

a
p¡1P
k=1

kp¡1 ´ ¡1 (mod p) b
p¡1P
k=1

kp ´ 0 (mod p)

11 Use the Little Theorem to find the last digit of the base 7 expansion of 3100.

12 In base 7, the integer X has representation (t40 000 00(6 ¡ t) (2t)t3)7,

which means X = t £ 711 + 4 £ 710 + (6 ¡ t) £ 73 + (2t) £ 72 + t £ 7 + 3.

a In base 11, the representation of X is (xnxn¡1::::x2x1x0)11, where xi 2 Z and 0 6 xi 6 10,

i = 0, ...., n. Find x0.

b For t = 1, find X in base 11.

13 a

b

7x ´ 12 (mod17), 4x ´ 11 (mod 19)

2x ´ 1 (mod31), 6x ´ 5 (mod11), 3x ´ 17 (mod29)

Use Fermat’s Little Theorem to show that, in base 14, the last digit of an integer N equals the

last digit of N7.

Show that this result is also true in base 21.
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86 NUMBER THEORY (Chapter 1)

In the given picture there are 10 pigeons and

9 “pigeonholes”.

In this case, two pigeonholes contain more than one

pigeon.

Suppose the pigeons were taken out of their pigeonholes.

Each pigeon is now systematically placed in a

pigeonhole until they are all placed. Since the number

of pigeons exceeds the number of pigeonholes, it is

guaranteed that one of the holes will contain at least

two birds.

Suppose now that 24 pigeons are placed into the

9 pigeonholes. They are placed systematically in

separate pigeonholes, as far as is possible, until they

are all placed.

Since 24
9 ¼ 2:33, it is guaranteed that at least one pigeonhole will contain at least 3 pigeons.

The Pigeonhole Principle (PHP):

If n items are distributed amongst m pigeonholes with n, m 2 Z + and n > m, then:

(1) at least one pigeonhole will contain more than one item

(2) at least one pigeonhole will contain at least
n

m
(or the smallest integer greater than

n

m
, if

n

m
is

not an integer) items.

Proof: (By contradiction)

(1) Suppose each pigeonhole contains 0 or 1 items.

) the total number of items in the pigeonholes is 6 m < n, a contradiction.

) at least one pigeonhole will contain more than one item.

(2) Suppose each pigeonhole contains less than
n

m
items.

) the total number of items in the pigeonholes is < m £ n

m
= n, a contradiction.

) at least one pigeonhole will contain at least
n

m
(or the next integer greater than

n

m
, if

n

m
is

not an integer) items.

This simple and intuitive counting argument has many applications. Being able to determine when and

how the pigeonhole principle can be applied is often the challenge.

THE PIGEONHOLE PRINCIPLE

PRINCIPLE)

J
(DIRICHLET’S
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NUMBER THEORY (Chapter 1) 87

Consider a group of n people (n > 1) meeting for the first time. Each person shakes hands with

at least one other person. Prove there is a pair of people in the group who will shake hands the

same number of times.

Each person shakes at least 1 and at most n ¡ 1 hands.

) each person shakes 1, 2, ...., or (n ¡ 1) hands. Let these possibilities be the pigeonholes.

Since there are n people, and n > n ¡ 1, by the PHP at least two people are in the same

pigeonhole.

) there is a pair of people in the group who shake hands the same number of times.

Suppose five distinct points are arbitrarily drawn on the surface of a sphere.

Prove it is possible to cut the sphere in half so that four of the points will lie in one hemisphere.

Assume that any point lying on the cut lies in both hemispheres.

Let O be the point at the centre of the sphere.

Any two of the points on the surface, together with O, define a plane which bisects the sphere.

The three remaining points lie in one or both of the two resulting hemispheres. Since 3 > 2, by

the PHP one hemisphere will contain at least two of these three remaining points. Together with

the two original points chosen, this hemisphere contains at least four of the five original points.

Six distinct points are arbitrarily drawn on a plane such that no three are collinear. Each pair of

points is joined with a line segment called an edge which is coloured either red or blue.

Prove that in such a configuration it is always possible to find a triangle whose three edges have

the same colour.

Choose one of the points and label it A.

Point A lies on five edges, each of which is either red or blue.

Since 5
2 = 2:5, by the PHP at least 3 edges through A will have

the same colour. Call these edges AB, AC, and AD.

Consider the triangle formed by edges BD, BC, and CD.

If BD, BC, and CD all have the same colour, then 4BCD has all edges the same colour.

If BD, BC, and CD are not all the same colour, then both colours red and blue occur in 4BCD.

) one such edge will match the colour of edges AB, AC, and AD. Without loss of generality,

we suppose this edge is BC.

) 4ABC is a triangle with all edges the same colour.

Example 43

Example 42

Example 41

A

B

C

D
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88 NUMBER THEORY (Chapter 1)

EXERCISE 1J

1 Show that in any group of 13 people there will be 2 or more people who are born in the same

month.

2 Seven darts are thrown onto a circular dartboard of radius 10 cm. Assuming that all the darts land

on the dartboard, show that there are two darts which are at most 10 cm apart.

3 17 points are randomly placed in an equilateral triangle with side length 10 cm. Show that at least

two of the points are at most 2:5 cm away from each other.

4 10 children attended a party and each child received at least one of 50 party prizes. Show that there

were at least two children who received the same number of prizes.

5 Show that if nine of the first twelve positive integers are selected at random, the selection contains

at least three pairs whose sum is 13.

6 What is the minimum number of people needed to ensure that at least two of them have the same

birthday (not including the year of birth)?

7

a a pair of the same colour is drawn b two different coloured socks are drawn?

8 Prove that for every 27 word sequence in the US constitution, at least two words will start with the

same letter.

9 The capacity of Wembley stadium in London is 90 000. Prove that in a full stadium there are at

least 246 people with the same birthday (not including the year of birth).

10 Prove that if six distinct numbers from the integers 1 to 10 are chosen, then there will be two of

them which sum to eleven.

11 Prove that if eleven integers are chosen at random, then at least two have the same units digit.

12 Prove that, at any cocktail party with two or more people, there must be at least two people who

have the same number of acquaintances at the party.

Hint: Consider the separate cases:

(1) where everyone has at least one acquaintance at the party

(2) where someone has no acquaintance at the party.

13 Draw a square of side length two units. Place five distinct points on the interior of the square.

Prove that two of the points will be at most
p

2 units apart.

Hint: Partition the square into four congruent squares.

14 There are 25 students in a class. Each student received a score of 7, 6, 5, or 4 for a test. What is

the largest number of students which are guaranteed to have the same score?

15 Are there two powers of 2 which differ by a multiple of 2001?

16 A barrel contains 5 red, 8 blue, 10 green, and 7 yellow identically shaped balls. Balls are randomly

selected one by one. Find the least number of balls which must be selected to guarantee choosing:

a at least 3 red balls b at least 3 balls of the same colour

c at least 3 differently coloured balls.

17 Three dice are rolled and the sum total is recorded. Find the least number of rolls required to be

guaranteed that a total will appear:

a twice b three times.

There are 8 black socks and 14 white socks in a drawer. Calculate the minimum number of socks

needed to be selected from the drawer (without looking) to ensure that:
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90 GRAPH THEORY (Chapter 2)

OPENING PROBLEMS

A

B C

D

E

F G

H

A

B

C

D

E

F
G

H

J

K

4 5

5

3

1
5

2

6
8 7

9

3
2

3

6 11

3

5

3

a Can you draw the diagram on the right without taking

your pen from the paper and without tracing over any

line more than once?

If you cannot, what is the minimum number of pen strokes

that are required to draw the diagram?

b Can you redraw the diagram on the right so that the lines

(redrawn as curves if necessary) joining the points only

intersect at the given points?

c Starting with point A, can you follow the lines and visit

each of the dots on the diagram alongside once and once

only, and then return to your starting point?

d i Suppose the diagram below represents an offshore oilfield. The dots represent the oil wells

and the lines joining them represent pipelines that could be constructed to connect the

wells. The number shown on each line is the cost (in millions of dollars) of constructing

that pipeline.

Each oil well must be connected to every other, but not necessarily directly. Which pipelines

should be constructed to minimise the cost? What is the minimum cost in this case?

ii Now suppose the diagram in d i represents the walking trails in a national park. The

numbers on the lines represent the suggested walk time in hours for that trail. If I want to

walk from point A to point E in the shortest possible time, what route should I take?
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GRAPH THEORY (Chapter 2) 91

A graph G = fV , Eg is a finite set V of points called vertices, some or all of which are joined

pairwise, by a finite set E of lines called edges.

An edge is an unordered pair AB of vertices A and B in the graph. Since the order of A and B is not

important, the graphs we consider here are said to be undirected.

For the given graph G,

G is represented by G = fV , Eg where

V = fA, B, C, D, E, Fg is the vertex set and

E = fAD, AE, BD, BE, BF, CE, CFg is the edge set.

An edge AA, from a vertex A to itself, is called a loop.

A graph is called simple if it contains no loops, and if there is a maximum of one edge joining any pair

of distinct vertices. For example:

G1: G2: G3:

A graph is called a multigraph if it contains a loop and/or more than one edge connecting a pair of

distinct vertices. For example:

M1: M2: M3:

These are formal definitions of concepts you will meet in this section:

Degree of a Vertex The number of edge endpoints incident on that vertex.

Degree Sequence The sequence of vertex degrees for a given graph, listed in

non-decreasing order.

Odd/Even Vertex A vertex is called odd/even if its degree is odd/even.

Adjacent Vertices Any two vertices which are joined by an edge within a graph.

Incident An edge which connects two adjacent vertices is said to be incident

on each vertex.

Adjacent Edges Edges which are incident on a common vertex.

TERMINOLOGYA

A

D
E

B
C

F
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92 GRAPH THEORY (Chapter 2)

Order of a Graph The number v of vertices in the graph.

Size of a Graph The number e of edges in the graph.

Loop An edge that connects a vertex to itself in a multigraph.

Connected Graph A graph in which every vertex can be reached from every other vertex

by a sequence of edges.

Complete Graph Kn A simple graph with n vertices in which every vertex is adjacent to

every other vertex.

Null Graph A graph with no edges.

Subgraph A graph made from a subset of the vertex set and a subset of the edge

set of another graph.

Regular Graph A graph in which every vertex has the same degree.

r-Regular Graph A graph in which every vertex has degree r.

Graph Complement The simple graph G0 whose vertex set is the same as the given simple

graph G, but whose edge set is constructed by vertices adjacent if and

only if they were not adjacent in G.

Planar Graph A graph which can be drawn in the plane with edges only crossing at

vertices.

Bipartite Graph A graph whose vertices can be divided into two disjoint sets with no

two vertices of the same set being adjacent.

Complete Bipartite Graph A simple bipartite graph which contains all possible edges.

For example, consider the following simple graphs:

1 2 3

4 5 6

You should note the following features:

² In Graph 1 there is no vertex at the centre. The graph has 4 vertices, so its order is 4. The graph

has 6 edges, so its size is 6.

² Graphs 1, 2, and 5 are complete, since each vertex is joined by an edge to every other vertex on

the graph.

² Graph 2 is K5, the complete graph on 5 vertices. 4 edges are incident at each vertex, so each vertex

is adjacent to four vertices and has degree four. The graph is 4-regular.
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GRAPH THEORY (Chapter 2) 93

² Graph 3 is denoted C6, the cycle graph on 6 vertices.

² Graph 4 is W7, the wheel graph on 7 vertices. It consists of a cycle of 6 vertices, plus a hub in

the centre which is connected to every other vertex.

² Graph 5 is both W4 and K4.

² Graph 6 is known as the Petersen Graph. It is an example of a graph which is not complete, but

which is regular. In this case the graph is 3-regular or cubic.

² Graphs 1 and 5 are both the complete graph on 4 vertices, they are just drawn differently. We say

they are isomorphic to each other. However, note that isomorphism is outside the syllabus for this

Option.

Find the degree sequence of graph G shown.

deg(A) = 3, deg(B) = 2, deg(C) = 3, deg(D) = 6, deg(E) = 0

) the degree sequence of G is 0, 2, 3, 3, 6.

Consider the graph G shown:

a Define the graph in terms of its vertices and edges.

b Find the order and size of G.

c Comment on the nature of G.

d Is G planar? Explain your answer.

e Draw a subgroup of G which is:

i connected ii not connected.

a The graph is represented by G = fV , Eg where

V = fA, B, C, D, P, Q, Rg and

b G has 7 vertices and 8 edges.

) G has order = 7 and size = 8.

c G is simple because no vertex joins directly to itself and each pair of vertices is joined by at

most one edge.

G is also connected since all of the vertices can be reached from all of the others.

For example, A ! R by an edge sequence of length 3 such as AQ, QD, DR.

The degrees of the vertices A, B, C, D, P, Q, R are 2, 1, 3, 2, 2, 4, 2 respectively. Thus

the degree sequence for G is 1, 2, 2, 2, 2, 3, 4.

Since the degrees of the vertices are not all the same, G is not regular.

However, G is bipartite with the two disjoint vertex sets V1 = fA, B, C, Dg and

V2 = fP, Q, Rg.

Example 2

Example 1

A B C D

P Q R

A

B

C

D
E

E = fAP, AQ, BQ, CP, CQ, CR, DQ, DRg
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94 GRAPH THEORY (Chapter 2)

d G is planar since it can be drawn without any

of the edges crossing, as illustrated opposite.

e i One connected subgraph of G is: ii One subgraph of G which is not

connected is:

COMPLETE BIPARTITE GRAPHS

The simple graph shown opposite is a complete

bipartite graph.

It has two disjoint vertex subsets of order 4 and 3. Each

element in one vertex set is adjacent to every vertex in

the other vertex set, but not adjacent to any vertex in

the same vertex set.

The graph is denoted K4, 3 since there are 4 vertices

in one set and 3 in the other.

A complete bipartite graph Km, n has order m + n and size mn.

EXERCISE 2A

1 For each graph below, write down its:

i order ii size iii degree sequence.

a b c

d e f

2 Which of the graphs in 1 are:

i simple ii connected iii complete?

A B C D

P Q R

A B C D

P Q R

A B C D

P Q R

A C D

P Q R
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GRAPH THEORY (Chapter 2) 95

3 a Draw:

i G = fV , Eg where V = fA, B, C, Dg and E = fAB, BC, CD, AD, BDg
ii G = fV , Eg where V = fP, Q, R, S, Tg and E = fPQ, PR, RS, PTg
iii G = fV , Eg where V = fW, X, Y, Zg and E = fXY, YZ, YZ, ZX, XXg
iv a graph with 5 vertices, each joined to every other vertex by a single edge

v a simple, connected graph with 4 vertices and 3 edges.

b Is there more than one possible answer to a

c Which of the graphs in a are

d Draw the complement of each graph a i, ii, and iv.

4 a What is the minimum number of edges a simple connected graph of order k can have?

b What is the size of the complete graph Kn of order n? What is the size of the complement

of Kn?

c If G is a simple graph with order n and size write a formula for the size of the complement

of G.

d Hence show that a simple connected graph with order n and size satisfies the inequality

5 a By considering different graphs, establish a formula connecting the sum of the degrees of a

graph and its size. Prove your result.

b A graph of order 7 has degree sequence 1, 2, 2, 3, 4, 5, 5. How many edges does it have?

6 Show that it is impossible to have a simple graph of order six with degree sequence 1, 2, 3, 4, 4, 5.

7 Determine whether a simple graph G can be drawn with degree sequence:

a 2, 3, 4, 4, 5 b 1, 2, 3, 4, 4

8 a Given the degrees of the vertices of a graph G, is it possible to determine its order and size?

b Given the order and size of a graph G, is it possible to determine the degrees of its vertices?

9 Wherever possible, draw an example of a simple graph with:

a no odd vertices b no even vertices

c exactly one vertex which has odd degree d exactly one vertex which has even degree

e exactly 2 odd vertices f exactly 2 even vertices.

10 Suppose G is a graph of order p and size q, and is r-regular with p > r. Express q in terms of

p and r.

11 Give an example of a graph which is:

a 0-regular and not complete b 1-regular and not complete

c 2-regular and not complete d 3-regular and not complete.

12 Draw the following graphs and their complements:

a W5 b K3, 3 c K6

13 Determine the number of edges of:

a K10 b K5, 3 c W8 d Kn e Km, n

14 If possible, draw an example of:

a a bipartite graph that is regular of degree 3 b a complete graph that is a wheel

c a complete graph that is bipartite.

e,

e

2n ¡ 2 6 2e 6 n2 ¡ n.

(1) simple (2) connected (3) complete?

v ? Explain your answer.
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96 GRAPH THEORY (Chapter 2)

15 Describe the complement of Km, n, including its size.

16 A simple graph G has the same number of vertices as edges, and the same number of edges as

its complement G0. Find the order and size of G, and draw a possible example of G and its

complement G0.

17 Let G be a simple graph with n vertices. Find the value of:

a order (G) + order (G0) b size (G) + size (G0)
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GRAPH THEORY (Chapter 2) 97

and prove some of these results.

The Handshaking Lemma:

For any graph G, the sum of the degrees of the vertices in G is twice the size of G.

Proof:

Each edge has two endpoints, and each endpoint contributes one to the degree of each vertex, including

edges which are loops.

) the sum of the degrees of the vertices in G is twice the number of edges of G, which is twice the

size of G.

Result:

Any graph G has an even number of vertices of odd degree.

Proof (by contradiction):

Suppose the graph has an odd number of odd vertices.

) the sum of the degrees of all of the (odd and even) vertices

gives a total which is odd.

However, by the Handshaking Lemma, the sum of the degrees

must be twice the size of the graph, and hence is even. This is a

contradiction, so it is not possible to have an odd number of odd

vertices.

Theorem:

In any simple, connected graph G, there are always at least two vertices of the same degree.

Proof:

Suppose G has n vertices. Since it is both simple and connected, the minimum degree of a vertex is 1,

and maximum degree of a vertex is n ¡ 1.

Since there are n vertices with n ¡ 1 possible degrees, by the pigeonhole principle there must be at

least two vertices with the same degree.

ADJACENCY TABLES

We have already seen how graphs can be represented as a list of vertices and edges. They can also be

represented by adjacency tables.

Consider a graph G = fV , Eg of order n with vertices V1, V2, ...., Vn. The adjacency table for G

is the n £ n array (with n rows and n columns) such that the entry in row i and column j (called the

(i, j)th entry) equals the number of distinct edges from vertex Vi to vertex Vj .

FUNDAMENTAL RESULTS OF GRAPH THEORYB

A vertex of odd degree is

called an .odd vertex

From Exercise 2A, you will have discovered some general results for graphs. In this section we explore
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98 GRAPH THEORY (Chapter 2)

For example:

² the simple graph

² the multigraph

Note that in some other treatments of graph theory, each loop contributes 2 to the value of the relevant

entry on the main diagonal. Here, each loop contributes only 1.

PROPERTIES OF ADJACENCY TABLES

1 An adjacency table is symmetric about the main diagonal, since vertex Vi is adjacent to vertex Vj

, vertex Vj is adjacent to vertex Vi, for all i 6= j.

2 For simple graphs, the sum of the entries in any row (or column) equals the degree of the

corresponding vertex.

) using the Handshaking Lemma, the sum of all entries in the adjacency table equals twice the

size of the graph.

3 For multigraphs, the sum of the entries in any row (or column) not on the main diagonal, plus

twice the entry on the main diagonal, equals the degree of the corresponding vertex.

) the sum of all entries on or below the main diagonal of the adjacency table equals the size of

the graph.

EXERCISE 2B

1 Which of these adjacency tables cannot represent a graph?

a

2 Consider the adjacency table

Draw the corresponding graph. Verify that the total number of 1s in the matrix equals the sum of

the degrees of the vertices.

V1 V2

V3V4

V1

V2

V3
V4

has adjacency table

V1 V2 V3 V4

V1 0 1 0 1
V2 1 0 1 0
V3 0 1 0 1
V4 1 0 1 0

or simply

0
B@

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

1
CA

has adjacency table:

0
B@

1 1 0 1
1 0 3 0
0 3 0 1
1 0 1 0

1
CA

0
B@

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

1
CA

b
0
BBB@

0 1 0 1 0
1 0 0 1 1
0 0 0 0 1
1 1 0 0 0
0 0 0 0 0

1
CCCA

c
0
@ 1 1 1

1 1 1
1 1 1

1
A

0
B@

0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

1
CA.
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GRAPH THEORY (Chapter 2) 99

3 Determine the adjacency table for each graph:

a b c

4 a Construct a graph for each adjacency table:

i ii

b Find the complement of each graph in a, and write down the adjacency table for the complement.

c For a simple graph G, explain how the adjacency table for the complement G0 of G can be

obtained from the adjacency table of G.

5 Find the size of the graph G with adjacency table:

a b

6 Represent each of the following graphs using an adjacency table:

a K4 b C4 c W4 d K1, 4 e K2, 3

7 Find the form of the adjacency table for each of the following graphs:

a Kn b Cn c Wn d Km, n

V1

V2

V3V4

V5

V1

V2

V3V4

V5

V1

V2

V3V4

V5

0
BBB@

0 1 1 0 1
1 0 1 1 1
1 1 0 1 0
0 1 1 0 0
1 1 0 0 0

1
CCCA

0
B@

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

1
CA

0
BBB@

0 1 0 1 1
1 0 1 0 1
0 1 0 1 1
1 0 1 0 0
1 1 1 0 0

1
CCCA

0
BBB@

3 1 0 0 1
1 0 1 2 1
0 1 1 1 0
0 2 1 0 1
1 1 0 1 2

1
CCCA
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100 GRAPH THEORY (Chapter 2)

THE BRIDGES OF KÖNIGSBERGINVESTIGATION 1

Having defined what a graph is, we now consider various ways of moving from vertex to vertex along

the edges of a graph. For example, we may have to visit every vertex on our journey, or travel along

every edge, or take account of the time it takes to traverse a given set of edges.

As we do this, we consider the work of two of the founding mathematicians of Graph Theory, Leonard

Euler and William Hamilton, and introduce the two classic problems their work eventually gave rise to.

One of Euler’s most famous contributions to mathematics

concerned the town of Kaliningrad, or Königsberg as it

was then known. The town is situated on the river Pregel

in what was then Prussia, and has seven bridges linking

two islands and the north and south banks of the river. A

simplified map is shown alongside.

What to do:

1 Can a tour be made of the town, returning to the

original point, that crosses all of the bridges once

only?

2 Euler determined that such a circuit is not possible.

However, it would be possible if either one bridge

was removed or one was added.

a Which bridge would you remove?

b Where on the diagram would you add a bridge?

3 The Bridges of Königsberg question is closely related to children’s puzzles in which a graph can

or cannot be drawn without the pen leaving the paper or an edge being drawn twice. If such a

drawing can be made, the graph is said to be traversable. Note that in this case, the start and

end points may or may not be the same vertex.

Which of these are traversable?

TERMINOLOGY

A walk is a finite sequence of linked edges.

We begin the walk at the initial vertex and end it at the final vertex. The length of the walk is the

total number of steps (or times an edge is traversed) in the walk.

JOURNEYS ON GRAPHSC

river
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GRAPH THEORY (Chapter 2) 101

V W Z

X

Y

A walk can be described by its vertices and edges or (if there is no ambiguity) by listing only vertices

or only edges.

In the multigraph alongside, a walk of length 6 might be

V W Y Z Z Y X.

In a walk, any vertex may be visited any number of times and

any edge may be used as often as one wishes.

A trail is a walk where all of the edges are distinct. Vertices

may be visited as often as one wishes, but once an edge has

been used it may not be used again.

A path is a walk where all vertices are distinct.

For example, in the multigraph above:

² X V W Y Z X Y is a trail of length 6

² V W Y X and W X V Y Z are paths of length 3 and 4 respectively.

A walk or trail is said to be closed if the initial and final

vertices are the same.

A closed trail is called a circuit.

A cycle is a circuit with only one repeated vertex, and this is

both the initial and final vertex.

² The loop Z Z is a cycle of length 1.

² V X V using the distinct edges is a cycle of length 2.

² V W Y X Z Y V is a circuit.

² W X Y W and X Y W X and X W Y X

all represent the same cycle, since they all contain the same set of edges.

EXERCISE 2C.1

1

a a path of length 2 from A to D

b a path of length 3 from A to D

c a path of length 4 from A to D

d a trail which is not a path, of length 5 from B to D

e a cycle of length 5

f a cycle of length 7

g a circuit which is not a cycle, of length 7

h a circuit of length 10.

Any path is a trail, but a trail

is not necessarily a path.

By definition, no path is closed.

F

EA

D

C
B

For the given graph, find, if possible:

For example, in the multigraph above:
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102 GRAPH THEORY (Chapter 2)

2 Consider the given graph. Find, if possible:

a

b

EULERIAN GRAPHS

An Eulerian Trail is a trail which uses every edge in the graph exactly once. If such a trail exists, the

graph is traversable.

An Eulerian Circuit is an Eulerian trail which is a circuit.

A graph is Eulerian if it contains an Eulerian circuit.

A graph is semi-Eulerian if it contains an Eulerian trail but not an Eulerian circuit.

The Bridges of Königsberg problem attempts to find an Eulerian

circuit of the corresponding graph shown.

Notice that the degree of each vertex is odd. This is why no

Eulerian circuit is possible.

Theorem:

If a graph contains any vertices of odd degree, it is not Eulerian.

Proof:

For a graph to contain an Eulerian circuit, each vertex must be entered by an edge and left by another

edge which is not a loop.

Therefore, if there is an odd vertex, then at least one edge from the vertex is unused, and the graph is

not Eulerian.

Euler was also able to prove the (more difficult) converse of this statement as well. We are hence able

to state the following results:

Theorem:

A connected graph is Eulerian if and only if all of its vertices are even.

Corollary:

A connected graph is semi-Eulerian if and only if exactly two of its vertices are odd.

a trail which includes every edge of the graph

a circuit which includes every edge of the graph.
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GRAPH THEORY (Chapter 2) 103

Proof of Corollary:

( ) ) Suppose the connected graph G = fV , Eg is traversable with V1V2::::Vn an Eulerian trail

which is not a circuit.

The edge V1Vn =2 E since the trail uses all edges in E and the trail is not a circuit.

Consider the graph G [ fV1Vng of graph G with edge V1Vn added to it.

Then G [ fV1Vng has an Eulerian circuit, namely V1V2::::VnV1.

By the above theorem, the degree of each vertex in G [ fV1Vng is even.

) each vertex of the original graph G has even degree, except V1 and Vn which have odd

degree. The two vertices of odd degree are necessarily the endpoints of the Eulerian trail.

( ( ) Suppose the connected graph G = fV , Eg has exactly two vertices V1, V2 each of odd

degree. By the above theorem, G is not Eulerian.

Consider the graph G [ fV1V2g of graph G with edge V1V2 added to it.

Then the graph G [ fV1V2g has all vertices of even degree.

By the above theorem, G [ fV1V2g has an Eulerian circuit, which necessarily uses edge

V1V2.

) the original graph G contained an Eulerian trail with endpoints V1 and V2, but not an

Eulerian circuit.

) G is semi-Eulerian.

We can formalise the definition of a connected graph as follows:

A graph is connected if and only if there is a path between each pair of vertices.

Theorem:

A simple graph is bipartite if and only if each circuit in the graph is of even length.

Theorem:

A simple connected graph G with n vertices and e edges satisfies n ¡ 1 6 e 6 1
2n(n ¡ 1).

Proof:

Kn, the complete graph on n vertices, has the maximum number of edges for a simple graph on

n vertices. The number is 1
2n(n ¡ 1).

) e 6 1
2n(n ¡ 1).

Suppose V1V2 is an edge in G. Since the graph is connected, each of the remaining n¡ 2 vertices

are connected to V1 or V2 by a path of length > 1. Thus the graph must contain at least n ¡ 2
distinct edges, in addition to edge V1V2.

) e > n ¡ 2 + 1 = n ¡ 1.

edge V1V2

Thus n ¡ 1 6 e 6 1
2n(n ¡ 1), as required.
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104 GRAPH THEORY (Chapter 2)

Corollary:

Any simple graph with n vertices and more than 1
2 (n ¡ 1)(n ¡ 2) edges is connected.

EXERCISE 2C.2

1 Classify the following as Eulerian, semi-Eulerian, or neither:

a b c

d e f

2 Give an example of a graph of order 7 which is:

a Eulerian b semi-Eulerian c neither

3 Decide whether the following graphs are Eulerian, semi-Eulerian, or neither:

a K5 b K2, 3 c Wn d Cm

4 For which values of:

a n is Kn Eulerian b m, n is Km, n Eulerian?

5 A simple graph G has five vertices, and each vertex has the same degree d.

a State the possible values of d.

b If G is connected, what are the possible values of d?

c If G is Eulerian, what are the possible values of d?

6 The girth of a graph is defined as the length of its shortest cycle.

Find the girth of:

a K9 b K5, 7 c the Petersen graph

7 Consider the Bonnigskerb bridge

problem opposite.

a Can a circular walk be performed?

b Would either the addition or

deletion of one bridge allow a

circular walk to be performed?
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GRAPH THEORY (Chapter 2) 105

8 Show that is is possible to transform any connected graph G into an Eulerian graph by the addition

of edges.

9 a How many continuous pen strokes are needed to draw

the diagram on the right, without repeating any line

segment between the given points?

b How is this problem related to Eulerian graphs?

10 Suppose you have a job as a road cleaner. The

diagram of the roads to be cleaned is drawn to scale

alongside.

a Is it possible to begin at A, clean every road

exactly once, and return to A?

Is it possible to begin at B, clean every road

exactly once, and return to B?

b Suppose that you have to begin and end your

sweeping duties at A, so you will have to drive

down some streets more than once. If your

speed never varies, what is the most efficient

way of completing your task?

11 Prove that a simple graph is bipartite if and only if each circuit in the graph is of even length.

12 Prove that any simple graph with n vertices and more than 1
2(n ¡ 1)(n ¡ 2) edges is connected.

A diagram may be useful.

HAMILTONIAN GRAPHS

William Rowan Hamilton invented a game known as The Icosian Game. It was sold for $25 by

Hamilton and was marketed as “Round the World”. It essentially required finding a closed trail on the

dodecahedron.

A picture of the game can be found at:

www.puzzlemuseum.com/month/picm02/200207icosian.htm

A Schlegel diagram is a graph whose edges do not cross, which is

drawn to represent a 3-dimensional solid.

A Schlegel diagram of the dodecahedron in the Icosian game is shown

opposite.

Is it possible, starting and finishing at the same vertex, to follow the

edges and visit every other vertex exactly once without lifting the

pen?

There are, in fact, two solutions!
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106 GRAPH THEORY (Chapter 2)

A graph is said to be Hamiltonian if there exists a cycle that passes through every vertex on the graph.

Such a cycle is called a Hamiltonian cycle.

If a path exists that passes through every vertex on the graph exactly once then the graph is said to be

semi-Hamiltonian. The path is called a Hamiltonian path.

Note that loops and multiple edges are irrelevant when determining whether a Hamiltonian path or cycle

exists within a graph. Thus it is sufficient to consider simple graphs.

Given the diagram alongside, does

a Hamiltonian cycle exist?

Yes, there are several.

For example, G F B A E D C G

We have seen that for a graph to be Eulerian, all vertices must have even degree. By contrast, we cannot

give a precise set of conditions for a graph to be Hamiltonian. However, we can state the following

important theorems concerning Hamiltonian graphs:

1 If G is a simple graph of order n, where n > 3, and if degree (V) + degree (W) > n for each

pair of non-adjacent vertices V and W, then there exists a Hamiltonian cycle. (Ore, 1960)

2 If G is a simple graph of order n, where n > 3, and if each vertex has degree > 1
2n, then there

exists a Hamiltonian cycle. (Dirac, 1952)

3 If G is a simple graph of order n, where n > 3, with at least 1
2(n¡ 1)(n¡ 2) + 2 edges, then

there exists a Hamiltonian cycle.

Note that while these are all sufficient conditions for the existence of a

Hamiltonian cycle, they are not necessary.

Proof of 1:

For cases n > 5, we use a proof by contradiction.

Suppose that G is a simple graph of order n > 5 which does not contain a Hamiltonian cycle, and

for which deg(V) + deg(W) > n for each pair of non-adjacent vertices V, W in G.

Note that Kn is Hamiltonian, so G is necessarily a subgraph of Kn and G 6= Kn, and therefore

G has less than 1
2n(n ¡ 1) edges.

Without loss of generality we consider such a graph G, with the maximum possible number of edges

so that the addition of a new edge results in a Hamiltonian graph.

Example 3

A

B C

DE

F G

A Hamiltonian cycle visits

all once.

An Eulerian circuit uses

every once.

vertices

edge

For example, in the graph of order 6 alongside, each vertex has degree 2 and

the graph is Hamiltonian.
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Suppose vertices V, W are non-adjacent in G.

Let VW be a new edge and consider the graph G [ fVWg which is necessarily Hamiltonian.

Then G has a Hamiltonian path from V to W, namely the Hamiltonian cycle of G [ fVWg with

edge VW deleted.

Suppose this Hamiltonian path is V = V1 V2 V3 :::: Vn¡2 Vn¡1 Vn = W.

We now consider the (n ¡ 1) pairs of consecutive vertices fVi, Vi+1g for i = 1, ...., n ¡ 1, and

check whether V is adjacent to Vi+1, and whether W is adjacent to Vi.

For any i, at most one of these adjacencies can occur, because if both occur G would contain the

Hamiltonian cycle V V2 :::: Vi W Vn¡1 :::: Vi+1 V.

But this means that deg(V) + deg(W) 6 n ¡ 1, which contradicts deg(V) + deg(W) > n.

So, G must contain a Hamiltonian cycle.

For n = 3, a graph G satisfying the premise is necessarily K3, which is Hamiltonian.

For n = 4, a graph G satisfying the premise has C4 as a subgraph, so it is Hamiltonian.

GRAPH THEORY (Chapter 2) 107

Proof of 2:

A graph G satisfying the premise of 2 must also satisfy the conditions of 1, and is therefore Hamiltonian.

Proof of 3:

Suppose V, W are two non-adjacent vertices in G.

Consider a subgraph H of G which is the graph G with vertices V, W removed and all edges incident

with V or W removed.

Note that since G is simple, H is simple and H is a subgraph of Kn¡2.

) the number of edges in Kn¡2 > the number of edges in H

)
(n¡ 2)(n¡ 3)

2
> the number of edges in G ¡ deg(V) ¡ deg(W)

) deg(V) + deg(W) > ¡ (n¡ 2)(n¡ 3)

2
+

(n¡ 1)(n¡ 2)

2
+ 2

) deg(V) + deg(W) >
(n¡ 2)

2
[n ¡ 1 ¡ (n ¡ 3)] + 2

) deg(V) + deg(W) >
(n¡ 2)

2
£ 2 + 2

) deg(V) + deg(W) > n

Hence G satisfies the conditions of 1, and is therefore Hamiltonian.

V V= 1V2

V3

Vi
Vi+1

W V= n Vn-1

Vn-2

Hamiltonian path
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108 GRAPH THEORY (Chapter 2)

EXERCISE 2C.3

1 State whether each of the following graphs is Hamiltonian (and therefore also semi-Hamiltonian) or

semi-Hamiltonian only:

a K5 b K2, 3 c W6

d e f

g h

2 Which of the graphs in 1 satisfy any of the three theorems about Hamiltonian graphs?

3 Give examples of graphs which are:

a both Hamiltonian and Eulerian b Hamiltonian but not Eulerian

c Eulerian but not Hamiltonian

d semi-Hamiltonian and semi-Eulerian, but neither Hamiltonian nor Eulerian.

4 What are the conditions on m and n so that Km, n is Hamiltonian?

5 a Prove that Kn is Hamiltonian for all n > 3.

b How many distinct Hamiltonian cycles does Kn have?

6 Show that the Groetsch graph shown alongside is

Hamiltonian.

7 a Prove that if G is a bipartite graph with an odd

number of vertices, then G is not Hamiltonian.

b Deduce that the graph alongside is not Hamiltonian.

c Show that if n is odd, it is not possible for a knight

to visit all of the squares on an n £ n chessboard

exactly once and return to its starting point.

d Give an example of a connected bipartite graph with

an even number of vertices, which is:

i Hamiltonian

ii semi-Hamiltonian but not Hamiltonian

iii neither Hamiltonian nor semi-Hamiltonian.
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GRAPH THEORY (Chapter 2) 109

8

9 Find a Hamiltonian cycle for the dodecahedron.

Trace it out on its Schlegel diagram.
PRINTABLE

DIAGRAMS

Is it possible to find a Hamiltonian cycle in the Herschel

graph alongside?
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110 GRAPH THEORY (Chapter 2)

The property of planarity is important in the study of the class of

three-dimensional solids known as polyhedra.

A polyhedron is a solid with flat or plane faces such as the cuboid

alongside.

This is a two-dimensional perspective representation of a

three-dimensional solid. It is also a graph. However, is it a planar

graph?

The answer is yes, since the Schlegel diagram opposite shows the

same vertex-edge incidence structure as the cuboid, but with edges

which only meet at a vertex.

Note that the regions 1, 2, 3, 4, 5, and 6 (of infinite area) represent

the faces of the cuboid.

Planar graphs can hence be described by their vertices and edges, and

also by the regions (called faces) which they define in the plane.

For a planar graph we define the degree of a face to be the minimum

number of edges in a closed walk around the border of the face.

For the given connected planar graph G, find:

a the number of vertices v

b the number of edges e

c the number of faces f

d the degree of each face.

a v = 12 b e = 15 c f = 5

d Label the faces F1, F2, F3, F4, F5 as shown.

F5 is the infinite face.

deg(F1) = 4, deg(F2) = 11,

deg(F3) = 4, deg(F4) = 3,

deg(F5) = 8

Note that a closed walk around the border

of F5 is for example

D ! C ! B ! A ! H ! G ! E ! C ! D,

with edge CD traversed twice.

PLANAR GRAPHSD

Example 4

A B

C

GH

E
F

D

A B

CD

E F

GH

1

2 3 4

5

6

F1

F2

F3

F4

F5

D

C

E

GH

A

B

Such a representation of the graph is called an embedding of the graph in the plane, or a plane

representation.

A graph G is planar if it can be drawn in the plane without any edge crossing another.

magentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 IB HL OPT

Discrete Mathematics

Y:\HAESE\IB_HL_OPT-DM\IB_HL_OPT-DM_02\110IB_HL_OPT-DM_02.cdr Thursday, 20 February 2014 5:48:11 PM BRIAN



GRAPH THEORY (Chapter 2) 111

EXERCISE 2D.1

1 For the given connected planar graph, find:

a the number of vertices v

b the number of edges e

c the number of faces f

d the degree of each face.

2 Represent the given polyhedra using a graph with a plane representation.

a b

c d

3 The following utilities problem is a famous problem based

on planar graphs. The task is to connect each of the three

houses to each of the three services electricity, telephone, and

gas, with no pipes or cables crossing.

a Can the problem be solved?

b Could the problem be solved if we drew the houses and

services on the surface of a cylinder or sphere rather

than in the plane?

4 Decide whether each graph is planar or non-planar. Where possible, draw a plane representation of

the graph.

a b c d

A

B

C

DE

A

B
C

D

A

B

C

D

E
F

A B

C

D

E

F

G

H I

J

KL
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EULER’S FORMULAINVESTIGATION 2

A B

B D

HI

C EA

B E

IC

D

A

H

A

B

C

D

E

H
B

C

DE

H

A

J

K

I

112 GRAPH THEORY (Chapter 2)

5 For each given graph:

i Find a closed walk of minimum length around the border of the infinite face.

ii Find the degree of each face.

iii Verify that
P

deg(F ) = 2e.
F a face of G

a b c

d e

6 Prove that for any planar graph G with e edges,
P

deg(F ) = 2e.
F a face of G

Euler found a relationship for any connected planar graph between its number of vertices v, edges e,

and faces f .

What to do:

1 Copy and complete the table alongside using the graphs from

questions 2 and 5 in the previous Exercise.

v e f

2 Using your table as a basis, suggest Euler’s result.

3 Prove your result by induction, using the number of edges and the following steps:

a Let your basic case be the graph K2 and verify your result.

b Now, add an edge to K2 in as many different ways as you can. Note how this addition

affects the number of vertices and/or faces, but does not affect the formula. This will be

the inductive step.

c Perform the inductive step on an arbitrary graph of size k for which Euler’s relation is

assumed to hold. Hence complete your proof.

4 There is a similar relation for disconnected planar graphs.

Let n be the number of separate parts of the graph.

For example, in the graph opposite, n = 3, v = 8,

e = 6, and f = 2.

a Determine a rule for this situation.

b Prove your result by induction.
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GRAPH THEORY (Chapter 2) 113

Euler’s Formula:

If a connected graph G is planar with v vertices, e edges, and f faces, then it satisfies Euler’s formula

e + 2 = f + v.

Consider again the utilities problem in Exercise 2D.1 question 3, which is equivalent to asking whether

the complete bipartite graph K3, 3 is planar. We can now use Euler’s formula to prove it is not planar,

and hence that the utilities problem is not solvable.

Prove by contradiction that K3, 3 is not planar.

Suppose K3, 3 is planar.

Since K3, 3 has 6 vertices and 9 edges, by Euler’s formula it must have 5 faces.

But K3, 3 is also bipartite, so none of the faces in its plane representation are triangles.

) each face has at least 4 edges, so if we count the edges around all 5 faces, we obtain at least

4 £ 5 = 20.

In doing this we have counted each edge twice, since every edge is on the border of two faces.

) K3, 3 has at least 20
2 = 10 edges.

This is a contradiction, since K3, 3 has only 9 edges.

) K3, 3 is not a planar graph.

EXERCISE 2D.2

1 Prove by contradiction that K5 is not planar.

2 Prove that if a simple connected graph with v > 3 vertices is planar, then e 6 3v ¡ 6.

3 Prove that if a connected planar graph is such that each face has degree > 4, then e 6 2v ¡ 4.

4 Prove that if a simple connected bipartite graph is planar, then e 6 2v ¡ 4.

5 In 2, 3, and 4, you established the two inequalities e 6 2v ¡ 4 and e 6 3v ¡ 6. They state that

for a set number of vertices, there is an upper bound on the number of edges before they have to

start crossing each other.

a Verify by substitution into these inequalities that K5 and K3, 3 are not planar.

b Show that these inequalities do not help to determine whether or not K4 and K2, 3 are planar.

c Show that K4 and K2, 3 are planar by drawing appropriate plane representations.

6 Prove that if the length of the shortest cycle in a connected planar graph is 5, then 3e 6 5v ¡ 10.

Hence deduce that the Petersen graph is non-planar.

7 The girth g of a graph is the length of its shortest cycle. Establish a general inequality involving

e, v, and g for connected simple planar graphs, using a similar counting technique to that used in 2

and 3.

Example 5
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114 GRAPH THEORY (Chapter 2)

PLATONIC SOLIDSINVESTIGATION 3

8 Using the inequality e 6 3v ¡ 6:

a prove that in a simple connected planar graph with v > 3, there exists at least one vertex of

degree less than or equal to 5

b determine which complete graphs Kn are planar.

9 Draw a connected planar graph in which each vertex has degree 4.

10 Prove that all complete bipartite graphs of the form K2, n are planar.

11 For which values of s, t > 1 is the complete bipartite graph Ks, t not planar?

12

Hint: Consider the total number of edges in both G and G0 and then use the inequality from 2.

Platonic solids are regular polyhedra whose faces are all the same shape. Their existence has been

known since the time of the ancient Greek civilisation.

There are exactly five platonic solids: the tetrahedron, cube, octahedron, dodecahedron, and

icosahedron.

Tetrahedron Cube Octahedron Dodecahedron Icosahedron

In this Investigation, we prove that there are only five platonic solids using Euler’s formula and the

fact that all platonic solids are planar.

Suppose that a regular polyhedron P under consideration has v vertices, e edges, and f faces. Since

P is planar, we have Euler’s relation v ¡ e + f = 2.

P is also regular, so the degree of each vertex is the same. We let the degrees be p, where p > 3.

Each region of the graph of P has the same shape. We let the number of sides in each region be q,

where q > 3.

) pv = qf = 2e.

What to do:

1 Show that 8 = v(4 ¡ p) + f(4 ¡ q).

2 Since v and f are both positive, (4 ¡ p) and (4 ¡ q) cannot both be negative.

) either 4 ¡ p > 0 or 4 ¡ q > 0

) 3 6 p 6 4 or 3 6 q 6 4, though not necessarily both together.

Prove that for a simple connected graph G with at least 11 vertices, G and its complement G0 cannot

both be planar.
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GRAPH THEORY (Chapter 2) 115

SOCCER BALLSINVESTIGATION 4

We now have four cases to investigate: p = 3, p = 4, q = 3, and q = 4 and we must

consider each of these in turn to complete our proof.

a For the case p = 3, use qf = 3v = 2e and the modified Euler relation derived in 1 to

show f(6 ¡ q) = 12, f , q 2 Z +.

Using the factors of 12, we consider the separate cases from this equation:

² f = 1 ) q < 0 which is invalid

² f = 2 ) q = 0 which is invalid

fa region without edgesg
² f = 3 ) q = 2 ) v = 2 which is invalid

f3 vertices required for a regiong
² f = 4 ) q = 3 ) v = 4, e = 6 a tetrahedron

² f = 6 ) q = 4 ) v = 8, e = 12 a cube

² f = 12 ) q = 5 ) v = 20, e = 30 a dodecahedron

b For the case p = 4, use qf = 4v = 2e and the modified Euler relation to show that

f(4 ¡ q) = 8, f , q 2 Z +. Hence show that an octahedron is a platonic solid.

c Repeat b for the cases q = 3 and q = 4.

Having considered all cases, you should now have proven there are exactly five platonic solids.

3 Draw a Schlegel diagram for each platonic solid.

4 Draw a Hamiltonian path on each Schlegel diagram.

Soccer balls are constructed by stitching together regular pentagons and regular hexagons. They may

therefore be described as semi-regular polyhedrons.

If you look carefully at one of these balls, you will find it has exactly 12 pentagons. In the

Investigation we find out why.

Suppose our soccer ball is a polyhedron constructed from

p pentagons and h hexagons.

What to do:

1 Write down an expression for f , the number of faces in the graph of polyhedron, in terms of

p and h.

2 a How many edges do the pentagons have in total?

b How many edges do the hexagons have in total?

c How many edges does the graph of the polyhedron have in total? Call this number e.

Be careful to count each edge only once.

vertices
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116 GRAPH THEORY (Chapter 2)

EXTENSION

3 Given that each face meets with two other faces at a vertex, find a formula for v, the total

number of vertices of the graph of the polyhedron.

4 Use Euler’s rule to complete the proof.

5 There is no restriction on the number of hexagons. In fact, we do not need to use any.

What shape would we obtain if we used only pentagons?

6 If we used pentagons and squares, would we end up with 12 pentagons and an unrestricted

number of squares?

7 Prove that a soccer ball cannot be “tiled” out of hexagons alone.

Click on the icon to obtain an extension section on homeomorphic graphs

and Kuratowski’s theorem.
HOMEOMORPHIC

GRAPHS
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GRAPH THEORY (Chapter 2) 117

A tree is a connected, simple graph with no circuits or cycles. We say it is acyclic.

The vertices in a tree are sometimes called nodes.

Some examples of trees are shown below:

A spanning tree is a connected subgraph with no cycles and which contains all the vertices of the

original graph.

Theorem:

A graph G is connected if and only if it possesses a spanning tree.

Proof:

( ( ) If G has a spanning tree T , then by definition T is connected and contains all the vertices in G.

) since G contains all the edges in T , G is also connected.

( ) ) If G is connected, then either:

² G is a tree, in which case it is its own spanning tree, or

² G contains cycles. In this latter case, we can keep deleting edges of G without deleting

vertices until it is impossible to continue without disconnecting G. At this time, we are

left with a spanning tree of G.

Note that it is possible for a graph to have many distinct spanning trees.

For example, consider the graph G and one of its

spanning trees shown.

In the spanning tree:

² There are 16 vertices, so its order is 16.

² There are 15 edges, so its size is 15.

² There is one path only from A to B.

² If we delete any edge from the tree, then the

graph would be disconnected.

² If we add an edge without adding a vertex,

then the resulting graph has a cycle.

Graph G

Example spanning tree of G.

TREES AND ALGORITHMSE

Every connected simple graph

has a tree as a subgraph.

A

B

A

B
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118 GRAPH THEORY (Chapter 2)

PROPERTIES OF TREES

The following properties of trees are all equivalent and may each be used to establish whether or not a

given graph is a tree.

1 A simple graph T is a tree if and only if any two of its vertices are connected by exactly one path.

Proof:

( ) ) If T is a tree then it is connected. Hence there exists a path between any two vertices.

Suppose there is more than one distinct path between two vertices.

) the paths are somewhere disjoint, and the disjoint sections of path create a cycle.

But T is acyclic, so we have a contradiction.

Thus in any tree there is a unique path between any two vertices.

( ( ) Suppose T is a simple graph such that there exists a unique path between every pair of

vertices. T is connected, and it is acyclic since otherwise there would exist two paths

between two vertices.

) T is a tree.

2 A graph T is a tree if and only if it is connected and the removal of any one edge results in the

graph becoming disconnected.

Proof:

( ) ) If T is a tree, then by property 1, any edge is the unique path between the two incident

vertices.

) removing this edge disconnects the graph.

( ( ) Suppose T is a connected graph and the removal of any edge results in a disconnected

graph.

If T contains a cycle, then we can remove at least one further edge without the graph

becoming disconnected, a contradiction.

) T is connected and acyclic, and is therefore a tree.

3

Proof:

( ) ) If T is a tree of order n, then by definition it contains no cycles.

Now if T has order 2, then T is K2, which indeed has only 1 edge.

Now suppose that all trees with k vertices have k ¡ 1 edges.

Adding one edge to the tree without making a cycle requires us to add another vertex.

We hence form a tree with k + 1 vertices and k edges.

) by induction, a tree of order n has n ¡ 1 edges.

( ( ) Suppose T is a graph with n vertices, n ¡ 1 edges, and no cycles.

Since there are no cycles, there exists no more than one path between any two vertices.

Now if T is disconnected, suppose it is made up of k connected subgraphs, k > 1,

none of which contains a cycle.

If graph T has order n, T is a tree if and only if it contains no cycles, and has n ¡ 1 edges.
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GRAPH THEORY (Chapter 2) 119

) T is made up of k components, each of which is a tree, by result 1.

But we have just proved that a tree with m vertices has m ¡ 1 edges, so for k
disconnected trees with a total of n vertices, the total number of edges is n ¡ k.

Hence k = 1, which is a contradiction.

) T must be connected, and since it contains no cycles, it is a tree.

4

Proof:

( ) ) If T is a tree of order n, then by definition it is connected and acyclic.

Now if T has order 2, then T is K2, which indeed has only 1 edge.

Now suppose that all trees with k vertices have k ¡ 1 edges.

Adding one vertex to the tree without the tree becoming disconnected requires us to add

another edge.

Hence we form a tree with k + 1 vertices and k edges.

) by induction, a tree of order n has n ¡ 1 edges.

( ( ) Let G be a connected graph with n vertices and n ¡ 1 edges.

If G contains a cycle, then we can delete an edge from the graph to form a connected

subgraph of G with the same number of vertices as G. We can continue this process

r times (r > 0) until we obtain a tree T with n vertices and n ¡ 1 ¡ r edges.

However, we know that a tree with n vertices has n ¡ 1 edges, so r = 0.

This is a contradiction, so G must be acyclic.

) since G is connected and acyclic, it is a tree.

5 A graph T is a tree if it contains no cycles and if the addition of any new edge creates exactly

one cycle.

Proof:

If T is a tree, then by definition it is connected and contains no cycles.

If we add an edge between two existing vertices A and B, then there are now exactly two paths

from A to B.

) there is now a single cycle which starts and finishes at A, and travels in either direction

via B. The cycle through B is the same cycle since it contains the same set of edges.

Hence exactly one cycle is created.

If graph T has order n, T is a tree if and only if it is connected and has n ¡ 1 edges.
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120 GRAPH THEORY (Chapter 2)

EXERCISE 2E.1

1 Which of the graphs below are trees?

a b c d

2 Find all essentially distinct trees of order 6.

3 Can a complete graph be a tree? Explain your answer.

4 a Find the sum of the degrees of the vertices of a tree of order n.

b A tree has two vertices of degree 4, one of degree 3, and one of degree 2. All other vertices

have degree 1.

i How many vertices does it have? ii Draw the tree.

c A tree has two vertices of degree 5, three of degree 3, and two of degree 2. All other vertices

have degree 1.

i How many vertices does it have? ii Draw the tree.

5 Draw a tree with six vertices of degree 1, one vertex of degree 2, one vertex of degree 3, and one

vertex of degree 5.

6 Which complete bipartite graphs Km, n are trees?

7 Show that for n > 2, any tree on n vertices has at least two vertices of degree one.

FINDING A SPANNING TREE: THE BREADTH FIRST SEARCH

These are two algorithms for finding a spanning tree of a given connected graph in as efficient a way

as possible. These are the depth first search and the breadth first search. In this course we consider

only the breadth first search algorithm:

From a given starting vertex, we visit all adjacent vertices. Then for each of these vertices, we visit all

the adjacent vertices except those we have already been to, and so on until we have visited all vertices.

For example, for the graph alongside:

1 We choose a starting vertex, U. We label

vertex U with 0, since it is 0 steps from

itself.

2 We move to the vertices adjacent to U. These

are A and B. We label them 1, because they

are both 1 step from U.

A

B

C

D

E

F

G

H

U J
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GRAPH THEORY (Chapter 2) 121

3 Next, we choose one of these two adjacent

vertices. We choose B for no particular

reason and move to the as yet unlabelled

vertices adjacent to B. These are D and E,

and we label them both 2 because they are

both two steps from U. We repeat this with

the unlabelled vertices adjacent to A, but in

this case there are none.

Note that by moving only to the unlabelled

vertices we ensure that we do not form a

circuit.

4 All unlabelled vertices adjacent to those

labelled with a 2 are labelled 3, as they are

3 steps from U and cannot be reached in less

than 3 steps.

The process is continued until all vertices

have been reached. We end up with the

spanning tree shown alongside.

Note that:

² This spanning tree is not unique, because we could choose a different start vertex, or different orders

in which to visit the adjacent vertices.

² Since a spanning tree exists if and only if the original graph is connected, this algorithm can be

used to test whether or not a graph is connected. If the graph is not connected, we can never label

all vertices.

² The BFS algorithm tells us the minimum number of edges on the path from the starting point to any

other vertex on the graph.

EXERCISE 2E.2

1 Starting at A, find spanning trees for these graphs:

a b

2

A

B

C

D

E

F

G

H

U J0

1

1

2

2

U

A

B

C

D

E

F

G

H

J0

1

1 2

2

3

3

3

4

4

A C

DB

G

E F

H

A

How many different spanning trees are there for Cn, n > 3, with vertices labelled V1, V2, ...., Vn?
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122 GRAPH THEORY (Chapter 2)

3

4

WEIGHTED GRAPHS

An undirected weighted graph is one in which a numerical value called a weight is given for each

edge of the graph.

Situation 1: The nodes represent oil wells and the edges represent pipelines. The weights represent the

cost of constructing that pipeline. Each oil well must be connected to every other in a way

which minimises the total cost.

We must therefore find a minimum weight spanning tree of the graph. The algorithm we

consider for finding the spanning tree of minimum weight is Kruskal’s Algorithm.

Situation 2: The edges represent the walking trails in a national park. The weights represent the

suggested walk time in hours for that trail. We wish to find the shortest route from point A

to point E. We therefore seek the minimum weight path, called the minimum connector,

between the two given points. In this case we use Dijkstra’s Algorithm.

A

B

C

D

E

F
G

H

J

K

4 5

5

3

1
5

2

6 8 7
9

3

2
3

6
11

3

5

3

We will consider two types of problems for weighted

graphs. These correspond to the situations we described

in the Opening Problem d on page 90. Both situations

related to the weighted graph alongside.

a For each of the following graphs, draw the different possible spanning tree configurations.

Assume that the vertices of the graphs are unlabelled.

i K2 ii K3 iii K4 iv K5 v K6

b Now suppose the vertices of the graph Kn are labelled V1, V2, ...., Vn.

i Count the number of spanning trees of each type for Kn, n = 2, 3, 4, 5, 6, and hence

find the total number of spanning trees.

ii Postulate a formula for the total number of spanning trees for Kn, for n > 2.

a For each of the following graphs, draw the different possible spanning tree configurations.

Assume that the vertices of the graphs are unlabelled.

i K1, 1 ii K2, 2 iii K3, 3

b Conjecture a formula for the number of spanning trees for Kn, n with vertices labelled

V1, ...., Vn, W1, ...., Wn, given that the total number of spanning trees for K4, 4 is 4096.

5 Conjecture a formula for the number of spanning trees of Km, n with vertices labelled

V1, ...., Vm, W1, ...., Wn.
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GRAPH THEORY (Chapter 2) 123

KRUSKAL’S ALGORITHM

In Kruskal’s algorithm, we choose edges one at a time, taking the

edge of least weight at every stage while ensuring that no cycles

are formed. For a graph of order n, the minimum weight spanning

tree is obtained after n ¡ 1 successful choices of edge.

Use Kruskal’s algorithm to find the

minimum weight spanning tree of

the graph given.

There are 7 vertices, so we require 6 edges. Edge FG has the shortest length.

Edge Length Circuit Edge List Total Length

FG 2 No FG 2

DE 3 No FG, DE 5

AC 3 No FG, DE, AC 8

EG 4 No FG, DE, AC, EG 12

EF 5 Yes - reject FG, DE, AC, EG 12

CE 5 No FG, DE, AC, EG, CE 17

CD 5 Yes - reject FG, DE, AC, EG, CE 17

AB 6 No FG, DE, AC, EG, CE, AB 23

We have 6 edges, so we stop the algorithm.

The minimum weight spanning tree has total weight 23, and is shown below.

Example 6

A

B

C D

E

F

G

6 8

3
5

5

3

5

4

2

10

In this case the minimum

spanning tree is not unique.

We could have chosen CD

instead of CE.
A

B

C D

E

F

G

6 8

3
5

5

3

5

4

2

10

Kruskal’s algorithm is

used to find a minimum

weight spanning tree.
Step 1: Start with the shortest (or least weight) edge. If

there are several, choose one at random.

Step 2: Choose the shortest edge remaining that does not

complete a cycle. If there is more than one possible

choice, pick one at random.

Step 3: Repeat Step 2 until n¡ 1 edges have been chosen.
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124 GRAPH THEORY (Chapter 2)

TABLE FORM FOR A WEIGHTED GRAPH

In this section we see how weighted graphs can be represented using tables. This form is useful for

graphs with a large number of vertices, since we can then use a computer programme to perform our

search.

The table form for the graph alongside is

A B C D

A X 5 3 X

B 5 X 2 6

C 3 2 X 4

D X 6 4 X

or A B C D

A - 5 3 -

B - - 2 6

C - - - 4

D - - - -

where an X or - indicates that the two vertices (for the given row and column) are not adjacent.

For adjacent vertices the corresponding entry is the weight of the edge.

For undirected graphs the form on the left is symmetric about the main diagonal and therefore the form

on the right contains all the necessary information required to construct or reconstruct the weighted graph.

EXERCISE 2E.3

1

2 Find minimum weight spanning trees of the following graphs using the Kruskal algorithm.

a

b

A B C D E

A X 10 8 7 10

B 10 X 5 4 9

C 8 5 X 7 10

D 7 4 7 X 8

E 10 9 10 8 X

3 The table represents a weighted complete graph.

a How do we know it is a complete graph?

b Draw the graph.

c Use Kruskal’s algorithm to find a minimum weight

spanning tree for the graph.

7

5

2
6

1
4

4

43

5

3

2

1

2

3
2

5

4

1

A

B
C

D

E

F

GH

I

J

2

4
6

3

8

5
3

7

9

7
5

9
6

4 8

28

A

B

C

D

5

3

6

4
2

Solve the Opening Problem d i on page 90 using the Kruskal algorithm.
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GRAPH THEORY (Chapter 2) 125

A B C D E F G

A X X 30 X X 50 45

B X X 70 35 40 X X

C 30 70 X 50 X X 20

D X 35 50 X 10 X 15

E X 40 X 10 X 15 X

F 50 X X X 15 X 10

G 45 X 20 15 X 10 X

4 Draw the weighted graph and find a minimum

weight spanning tree for the network represented

by the table opposite:

THE MINIMUM CONNECTOR PROBLEM

The graph shows the shipping lanes between seven

ports. The edge weights represent the estimated

sailing time in days between the ports. A ship’s

captain wants to find the quickest route from A to D.

Problems with small graphs such as this, can usually be solved by inspection. In this case the quickest

time is 18 days using either A B G F E D

or A F E D.

However, real life problems generally require much larger and more involved graphs that can only be

sensibly handled using computers. Finding optimum paths through such graphs requires an algorithm or

set of rules that can be programmed into a computer.

Finding efficient algorithms for this and other graph theory tasks is an active area of research, for they

are used in areas as diverse as cancer research and electrical engineering.

In this course, we find the minimum weight path between two given vertices on a weighted connected

graph using Dijkstra’s algorithm.

It is important that for this algorithm to work, all weights on the graph must be non-negative. This is

generally realistic anyway, since the cost, distance, or time of travelling along an edge would not be

negative.

DIJKSTRA’S ALGORITHM

A

B C

D

EF

G

4

3

13

2

6
10

8

2 8
15

114

A starting vertex must be chosen or nominated.

Assign a value of 0 to the starting vertex. We draw a box around the vertex label and the 0
to show the label is permanent.

Consider all unboxed vertices adjacent to the latest boxed vertex. Label them with the

minimum weight from the starting vertex via the set of boxed vertices.

Choose the least of all of the unboxed labels on the whole graph, and make it permanent

by boxing it.

the set of boxed vertices to find the shortest path through the graph.

Step 1:

Step 2:

Step 3:

Step 4: Repeat Steps 2 and 3 until the destination vertex has been boxed, then backtrack through
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126 GRAPH THEORY (Chapter 2)

In each stage we try to find the path of minimum weight from a given vertex to the starting vertex. We

can therefore discard previously found shortest paths as we proceed, until we have obtained the path of

minimum weight from the start to the finishing vertex.

We will now apply Dijkstra’s algorithm to the example on the previous page:

Begin by labelling A with 0 and drawing a box

around it. Label the adjacent vertices B, G, and F

with the weights of the edges from A.

The weight of edge AB is least, so we draw a box

around B and its label.

Next we consider moving from B to all adjacent

vertices. These are C, which has cumulative

minimum weight 7, and G, which has cumulative

minimum weight via B of 6. We therefore label C

with 7, and replace the 8 next to G with a 6 since

the minimum weight path from A to G is via B,

with weight 6. We know it is the minimum because

it is the least of the unboxed labels on the graph.

Therefore, we put a box around the G and the 6.

Now C is unboxed and adjacent to G, but

6 + 8 = 14 > 7. We therefore do not update the

label. We also label D with 21, E with 17, and

F is labelled with 10. Notice that the minimum

path of weight 10 from A to F is obtained by either

A B G F or A F direct.

Of the new options, C is the least and is therefore

boxed.

We now consider all unboxed vertices adjacent to C.

We can update D from 21 to 20.

We choose the least of all of the unboxed labels on

the whole graph. This is the 10 corresponding to F,

so F is the next vertex to be boxed.

We can now update E to 16, and box it because it

now has the lowest unboxed label.

A 0

B C

D

EF

G
8

4

3

13

2

6
10

8

2 8
15

114

4

10
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B 4 C 7
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A 0

B C 7

D 21

E 17F 10

4

3
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6
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114

4

G
8
6

A 0

B C 7

D 21
20

E 17F 10

4

3
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2

6
10

8
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4

G
8
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A 0

B C 7
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4

G
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GRAPH THEORY (Chapter 2) 127

Finally, we update D to 18, and we are now sure that

the lowest label is attached to the final destination.

The algorithm stops, and its completed diagram is

shown opposite:

To complete the route, we have to back-track from D to A using the final boxed labels. We have 18 units

(and no more) to use, so we have to retrace steps back through E and F. From F, we can either return

directly to A, or return via G and B. We therefore have the two solutions, each of weight 18, that were

found by inspection:

A B G F E D and A F E D.

Note two unusual features of this example that do not occur in most problems:

² All vertices were considered. In general, the algorithm stops as soon as the destination vertex is

boxed, irrespective of whether all other vertices have been considered. This is because a vertex is

only boxed when we are sure it has the minimum cumulative weight.

² The minimum weight path from A to F was the same either via the intermediate vertices B and G or

directly along the incident edge. This does not in general occur, but if it does, either path is equally

valid.

EXERCISE 2E.4

1 Find the minimum connector from A to D for the networks below:

a b

2

3 Find the shortest path from A to G on the graph below:

a b

A

B C

D

EF

G

4

6
13

5

6
11

8

2 8
14

114
A

B C

D

EF

G

6

9
3

10

4
4

9

2 5
9

53

A 0

B C 7

D 21
20
18

E 17 16F 10

4

3

13

2

6
10

8

2 8
15

114

4

G
8
6

A

B

C D

E

F

G

6
8

3
12

5 4

9

13
9

3

A

B

C

D

E

F
GH

J K
7

9

7

5

8

6

10

12

4

3

3

8

4

6

4

4
4

6

2

Solve the Opening Problem d ii on page 90 using Dijkstra’s algorithm.
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128 GRAPH THEORY (Chapter 2)

The Chinese mathematician Kwan Mei-Ko posed the

question that given a weighted connected graph, what is

the minimum weight closed walk that covers each edge at

least once?

If all the vertices of the graph have even degree, the graph is

Eulerian and there exists an Eulerian circuit that traverses

every edge exactly once. The Chinese Postman Problem

(CPP) is therefore trivial for an Eulerian graph, and the

solution is any Eulerian circuit for the graph.

If a graph is not Eulerian, some of the edges must be walked twice to solve the CPP. The task is to

minimise the total weight of the edges we walk twice.

For non-Eulerian graphs, vertices with odd degree exist in pairs. We therefore need to walk twice over

some edges between pairs of odd vertices. We work out how to do this most efficiently either by

inspection or by using Dijkstra’s algorithm.

By pairing vertices of odd degree in any graph G, we can add a “new edge” between each such pair and

thus obtain a new graph H with all even vertices. H is an Eulerian graph, and any Eulerian circuit for H
can be converted to a possible solution to the CPP for G by replacing each “new edge” in the circuit by

the minimum connector path in G between the two odd vertices. These minimum connector paths are

found by inspection or by using Dijkstra’s algorithm.

If there are more than two odd vertices, we must consider each possible pairing of the vertices. We solve

the CPP by applying Dijkstra’s algorithm for each case. We then compare the results to find the closed

walk of minimum weight.

Solve the Chinese Postman Problem

for the weighted graph shown.

The graph is not Eulerian since vertices A and D have odd degree.

We therefore need to walk twice between these vertices.

The possible paths from A to D are:

A B C D with weight 1 + 3 + 2 = 6

A D with weight 2

A E D with weight 2 + 1 = 3

The most efficient way is therefore to traverse the edge AD twice.

A minimum weight closed walk that covers every edge at least once will have weight equal to the

sum of the weights of all the edges, plus the weight of edge AD again. The total is 11 + 2 = 13.

An example solution is A B C D A E D A.

THE CHINESE POSTMAN PROBLEM (CPP)F

Example 7

A

B C

D

E

1

2

3

2

12
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GRAPH THEORY (Chapter 2) 129

Use Dijkstra’s algorithm to help solve the Chinese

Postman Problem for the weighted graph shown.

The graph is not Eulerian since vertices B and F are odd.

We therefore need to walk twice between these

vertices, and we use Dijkstra’s algorithm to do this

in the most efficient way:

By Dijkstra, the minimum weight path from B to

F is B E F.

The solution will have total weight equal to the

weight of all edges, counting the weights of BE

and EF twice. The total weight is 69.

An example solution is

B C D E H G F E B A F E B.

Solve the Chinese Postman Problem

for the weighted graph shown.

The graph is not Eulerian since vertices A, B, C, and D are all odd.

There are three possible pairings of these vertices: AB and CD, AC and BD, AD and BC.

For each case we find the minimum weight connector path between the vertices, either by inspection

or using Dijkstra’s algorithm.

Minimum Weight Connector Combination’s Total

Pairing Path Weight Minimum Weight

AB

CD

A B

C E D

8
5

13

AC

BD

A E C

B E D

7
7

14

AD

BC

A E D

B E C

6
8

14

Example 9

Example 8

7

3

10

6 8

4 9 3
4

3

H

D

CBA

F

G

E

7

3

10

6 8

4 9 3
4

3

H 17

D 7

C 4B 0A 10

F 12

G

E 9

A

D C

B

E
7

6

9

8

4 5

32

IB HL OPT

Discrete Mathematicsmagentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0

Y:\HAESE\IB_HL_OPT-DM\IB_HL_OPT-DM_02\129IB_HL_OPT-DM_02.cdr Wednesday, 4 December 2013 3:27:55 PM BRIAN



130 GRAPH THEORY (Chapter 2)

The combination of pairs with the overall minimum weight is AB and CD.

Hence the most efficient way is to construct a closed walk which traverses all edges, and traverses

both routes A B and C E D twice each.

An example solution is

A E B A B C E D C E D

EXERCISE 2F

1 A snowplough must clear snow by driving along all of

the roads shown in the graph, starting and finishing at

the garage A. All distances shown are in km.

Explain why the shortest distance the snowplough must

travel is 24 km.

2 A network of paths connects four mountain tops as

shown in the figure. A keen rambler wishes to walk

along all of the paths linking the peaks, and return to

the starting point.

a Explain why the rambler will have to repeat some

sections of the track. How many sections will

have to be repeated?

b Considering all possible combinations of pairs, find the minimum distance that the rambler

must travel to cover every section of track, starting and finishing at A. Suggest a possible route

that achieves this minimum distance.

c After some careful thought, the rambler realises

that because of the terrain, he would be better off

considering the time required to walk the paths

instead of the distances. The map with the times

for each section of track is shown alongside. If

the ramber wants to minimise the total time on

route, what should his strategy be?

3 A roadsweeper based at A must clean all of the roads

shown at least once, and return to A.

a Explain why:

i some of the roads will have to be swept

twice

ii the shortest possible distance the roadsweeper

must travel is 63 units.

b Find a route by which the roadsweeper can achieve

this minimum.

A

B

C

4 h
6 h

4 h 7 h

3 h

6 hD

A

B

C

D

E

F

G3

2

4 6

7

7
1

5

4 2

3

5

6

H

A
B

C F

G

H
I

1
1

2

3

4

5

2

1

2

A

B

C

6 km

9 km

7 km 5 km

4 km

12 kmD

A of total weight 57.
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GRAPH THEORY (Chapter 2) 131

4 The graph opposite shows the roads in Postman

Peter’s mailing route. If the Post Office where Peter

starts and finishes his round is at A, how should

Peter minimise the distance he must walk? Find

this minimum distance.

5 A carnival procession wishes to march down each

of the roads shown, and return to its starting point.

All lengths are shown in kilometres.

a List the three different ways in which the four

odd vertices can be paired.

b Find the shortest distance that the procession

has to travel if they are to start and finish at E.

6 The graph opposite is a schematic drawing of an

oil field. The vertices are oil wells, and the edges

are the pipelines which connect them.

The cost of inspecting each pipeline (in tens of

thousands of dollars) by means of a robotic device,

is shown. Once the robot is on a pipeline, it must

inspect all of it.

Find the least cost solution for completing the

inspection, given that at the end of the inspection,

the robot must return to its starting point.

A

B

C

D

E

F

G

H

I

1

4

3

3

5

7

2 5
5

5

4

4

3

3

5

A B

CD

E
5 5.

4 5.

5

6

3 5.

1 5. 2

4 5.

A

B

C D

E G

1 3.

1 2.

1 3.

0 5.

1 8.

1 1.

1 5.

0 9.

2 2.

1 8.

F
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132 GRAPH THEORY (Chapter 2)

We have seen how the vertices of a weighted connected graph can represent cities, oilwells, or delivery

destinations, and the weights of the edges can represent travel distance, time, or connection cost.

For the Chinese Postman Problem we considered the most efficient way to travel along all edges of a

graph and return to our starting point.

For the Travelling Salesman Problem (TSP) we consider the most efficient way to visit all vertices of a

graph and return to our starting point.

We have seen that a Hamiltonian cycle is a cycle containing every vertex in a connected graph. A graph

which contains a Hamiltonian cycle is called Hamiltonian. Note that any complete graph is Hamiltonian.

A closed spanning walk in a connected graph is a closed walk which visits every vertex in the graph

at least once.

Since a closed spanning walk can have repeated edges and/or repeated vertices, a Hamiltonian cycle is

necessarily a closed spanning walk, but a closed spanning walk is not necessarily a Hamiltonian cycle.

Consider the complete weighted graph G:

Two examples of Hamiltonian cycles in G are: C1: ABCEDA of weight wt(C1) = 31

C2: ABCDEA of weight wt(C2) = 39

Note that C1 has a lower weight than C2.

Some examples of closed spanning walks in G are: Any Hamiltonian cycle in G,

W1: ABCEDECBA and wt(W1) = 52

W2: ABCEDBA and wt(W2) = 39

Note that W2 has a much lower weight than W1, but not as low as C1.

For this graph G it appears that the most efficient way to visit all vertices and return to our starting point,

is by the Hamiltonian cycle C1. However, there are two different statements for the TSP:

Classical Travelling Salesman Problem (TSP):

For a given weighted complete graph, find a Hamiltonian

cycle of least weight.

Practical Travelling Salesman Problem (TSP):

For a given weighted connected graph, find a closed spanning

walk of least weight.

THE TRAVELLING SALESMAN PROBLEM (TSP)G

5

7

9

10

8

8

75

4 8

A

B

CD

E

In the classical TSP

we are only allowed

to visit a vertex once!
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GRAPH THEORY (Chapter 2) 133

Consider the weighted complete graph H:

The solution to the classical TSP is the Hamiltonian cycle ABDCA of weight 13.

The solution to the practical TSP is the closed spanning walk ABDCBA of weight 11.

) for the practical TSP, the solution is not necessarily a Hamiltonian cycle.

For example, graph G above is Euclidean, but graph H is not. We see for the triangle ABC in H that

If a weighted complete graph is Euclidean, then the practical TSP and the classical TSP are equivalent

problems, and both are solvable by a minimum weight Hamiltonian cycle.

Note that if a weighted connected graph satisfies the triangle inequality but is not complete, it can be

made complete by the addition of edges of weight equal to the shortest path between the two given

vertices.

For example, consider the graph G on the left below. We can transform it into a complete graph KG as

follows:

G: KG:

Since KG is weighted, complete, and Euclidean, to solve the TSP we need only consider Hamiltonian

cycles in KG. We arbitrarily choose vertex A as the starting point, and find all Hamiltonian cycles in

KG starting and finishing at A.

ABCDA: 35 + 38 + 21 + 12 = 106

ABDCA: 35 + 23 + 21 + 33 = 112

ACBDA: 33 + 38 + 23 + 12 = 106

ACDBA: 33 + 21 + 23 + 35 = 112

ADBCA: 12 + 23 + 38 + 33 = 106

ADCBA: 12 + 21 + 38 + 35 = 106

The three cycles on the right are simply those on the left in reverse order, so they can be discarded. We

see that the solution to the TSP is a Hamiltonian cycle of weight 106, for example ABCDA of minimum

weight 106. We interpret from this that the solution to the practical TSP for the original graph G is given

by the closed spanning walk ADBCDA of weight 106.

A

B

C

D

9

2 3

1

5 3

A

B

C

D

12

23

21

38

A

B

C

D

12

23

21

38

33

35

wtfACg 66 wtfABg + wtfBCg.

A weighted complete graph is called Euclidean if, for all triples V, W, U of distinct vertices,

wtfVWg 6 wtfVUg + wtfUWg (triangle equality)

where wtfVWg is the weight of edge VW.
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134 GRAPH THEORY (Chapter 2)

From here on, we consider the TSP only for weighted complete graphs which are Euclidean.

Solving the TSP therefore reduces to finding a minimum weight Hamiltonian cycle.

It is not always easy to directly find a minimum weight Hamiltonian cycle. We now explore methods to

find upper and lower bounds for the TSP, which are upper and lower bounds for the minimum weight m
of the Hamiltonian cycle solution to the TSP.

FINDING AN UPPER BOUND

Let G be a Euclidean, weighted complete graph.

Let m be the weight of the minimum weight Hamiltonian cycle in G.

1 Kruskal’s algorithm can be used to find a minimum weight spanning tree T for G. The branches of

T can be used to construct a minimum weight spanning walk of weight 2 £ wt(T ).

Hence an upper bound for m is

m 6 2 £ wt(T ) for T any minimum weight spanning tree in G.

2 If we can find any Hamiltonian cycle C in G then wt(C) provides an upper bound for m.

m 6 wt(C) for C any Hamiltonian cycle in G.

A Hamiltonian cycle in G can be found by inspection or by using the nearest neighbour algorithm

below.

NEAREST NEIGHBOUR ALGORITHM

This is a greedy algorithm, which means that at each stage the optimal strategy is taken, regardless of the

consequences. The algorithm therefore delivers a Hamiltonian cycle of low, but not necessarily minimum

weight, for a complete weighted graph G. If G is Euclidean, the weight of the resulting Hamiltonian

cycle provides an upper bound for the TSP.

Start with the vertices only of a weighted complete graph G.

Choose a starting vertex, A. Label A as visited, and set A as the current vertex.

Find the edge of least weight connecting the current vertex to an unvisited vertex V.

Add this edge to the graph.

Label V as visited, and set V as the current vertex.

If all vertices in the graph are visited, then return to vertex A by adding the corresponding

edge. Otherwise, return to Step 3.

The sequence of visited vertices is a Hamiltonian cycle.

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:
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GRAPH THEORY (Chapter 2) 135

a Find a minimum weight spanning tree and

hence find an upper bound for the TSP.

b Find a Hamiltonian cycle which improves

the upper bound found in a.

a T : wt(T ) = 12 + 21 + 23 = 56

) m 6 2 £ 56 = 112 where m is the minimum

weight solution to the TSP.

b The Hamiltonian cycle ADBCA has weight = 106

) m 6 106.

a Find a minimum weight spanning tree and hence

find an upper bound for the TSP.

b Use the nearest neighbour algorithm starting at A,

to find a Hamiltonian cycle for the graph. Hence

improve the upper bound found in a.

c Does the Hamiltonian cycle in b solve the TSP?

Explain your answer.

a Let m be the least weight solution to the TSP.

Using Kruskal’s algorithm, there are four possible minimum weight spanning trees each of

weight 4 + 5 + 6 + 7 = 22.

Example 11

Example 10

A C

D

B

38

21

23

33

35

12

A C

D

B

21

23

12

A

B C

D

E

10

8

9

47

8

6 5

6 7

A

B C

D

E

47

5

6

A

B C

D

E

4

6 5

7
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136 GRAPH THEORY (Chapter 2)

) m 6 2 £ 22 = 44.

b Start at A.

The nearest vertex is C, so we add edge AC and set

C as the current vertex.

The nearest unvisited vertex to C is E, so we add

edge CE and set E as the current vertex.

Continuing this process, we choose ED, then DB.

All vertices have now been visited, so we add BA

to complete a Hamiltonian cycle.

The Hamiltonian cycle is ACEDBA with

weight = 5 + 7 + 4 + 6 + 10

= 32

) m 6 32.

c No. For example, the spanning tree BDEAC from a completes to the Hamiltonian cycle

BDEACB of weight = 6 + 4 + 7 + 5 + 8 = 30

FINDING A LOWER BOUND

Let G be a Euclidean, weighted, complete graph on the n vertices V1, V2, ...., Vn.

Suppose V1 V2 :::: Vn V1 is a minimum weight Hamiltonian cycle in G of minimum

weight m, that is a solution to the TSP for G.

Then m = wtfV1V2g + wtfV1Vng + (weight of the path V2 V3 :::: Vn).

Consider the graph GV1
on vertices V2, V3, ...., Vn which is G with vertex V1 removed and all edges

incident on V1 removed. Graph GV1
is a complete graph on the n ¡ 1 vertices V2, V3, ...., Vn.

The path V2 V3 :::: Vn is a spanning tree of GV1

) wt(path V2 V3 :::: Vn) > wt(a minimum weight spanning tree of GV1
)

) m > wtfV1V2g + wtfV1Vng + wt(a minimum weight spanning tree of GV1
)

This observation is the basis for the following method which gives a lower bound for the TSP.

A

B C

D

E

4

5

6 7

A

B C

D

E

47

6 5

A

B C

D

E

10

8

9

47

8

6 5

6 7
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GRAPH THEORY (Chapter 2) 137

DELETED VERTEX ALGORITHM

Note that the bound obtained depends on which vertex is chosen to be the deleted vertex. For each

choice of vertex to be deleted, the algorithm yields possibly different lower bounds. The largest such

bound provides the best lower bound for the TSP.

The value returned by the algorithm will only equal m in the solution to the TSP if there is a minimum

length spanning tree with only two end vertices and if the minimum lengths deleted are incident to these

end vertices.

a Apply the deleted vertex algorithm by

deleting vertex A.

Hence obtain a lower bound for the TSP.

b Find, if possible, a Hamiltonian cycle which

meets the bound found in a.

a There are two minimum spanning trees for the graph with vertex A deleted and all edges

incident with A deleted:

The minimum spanning trees each have weight 18.

The two edges of least weight incident with A have weights 5 and 7.

) if m is the minimum weight in the solution to the TSP, then m > 18 + 5 + 7 = 30.

b ACBDEA and ACBEDA both have weight 30.

Example 12

A

B C

D

E

10

8

9

47

8

6 5

6 7

B C

D

E

8

9

4

6

6
7

B C

D

E

8

9

4

6

6
7

Delete a vertex, together with all incident edges, from the original graph.

Find the minimum spanning tree for the remaining graph.

Add to the length of the minimum spanning tree, the lengths of the two shortest deleted

edges.

The resulting value is a lower bound for m, the minimum weight for the solution to the TSP.

Step 1:

Step 2:

Step 3:
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138 GRAPH THEORY (Chapter 2)

EXERCISE 2G

1 Consider again the graph in Examples 11 and 12.

a Find an upper bound for the TSP using the nearest

neighbour algorithm beginning at:

i vertex B ii vertex C

iii vertex D iv vertex E.

Which is the best bound found?

b Find a lower bound for the TSP using the deleted

vertex algorithm and deleting:

i vertex B ii vertex C

iii vertex D iv vertex E.

Which is the best bound found?

2 a Find a minimum spanning tree for the given graph.

Hence find an upper bound for the TSP.

b Complete the tree to a Hamiltonian cycle, and hence

find a better upper bound.

c By deleting each vertex in turn, use the deleted vertex

algorithm to find a set of lower bounds.

d Use the nearest neighbour algorithm, starting at P, to

find an upper bound for the TSP.

e Solve the TSP problem for this graph.

3 a Find two minimum spanning trees for the given graph.

b Complete one of these to a Hamiltonian cycle, and hence

find an upper bound for the TSP.

c By deleting each vertex in turn, use the deleted vertex

algorithm to find a set of lower bounds.

d Use the nearest neighbour algorithm, starting at P, to find

an upper bound for the TSP.

e Solve the TSP problem for this graph.

4 a Find a minimum spanning tree for the given graph.

Hence find an upper bound for the TSP.

b Find a Hamiltonian cycle, and hence find a better

upper bound.

c By deleting the vertices in turn, use the deleted vertex

algorithm to find a set of lower bounds.

d Use the nearest neighbour algorithm, starting at P, to

find an upper bound for the TSP.

e Solve the TSP problem for this graph.
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GRAPH THEORY (Chapter 2) 139

5 Consider the TSP for the given graph.

a Apply the deleted vertex algorithm with A, B, C, D, and E in turn to find a lower bound.

b Apply the nearest neighbour algorithm with A as the initial vertex to find an upper bound and

a Hamiltonian cycle.

c Suppose the network represented five towns.

i At which town would you choose to base yourself to minimise travel amongst the towns?

Explain your answer.

ii Apply the nearest neighbour algorithm using this vertex initially to find an upper bound

and a Hamiltonian cycle.

6 A hygiene inspector lives in Town A and has to visit hawkers centres in towns B, C, D, E, and F.

Use the nearest neighbour algorithm on the distance data below to recommend a route for him.

A B C D E F

A ¡ 16 13 11 7 8

B 16 ¡ 10 5 12 10

C 13 10 ¡ 4 7 9

D 11 5 4 ¡ 6 7

E 7 12 7 6 ¡ 9

F 8 10 9 7 9 ¡

7 The table below shows the distances, in km, between towns in France. Twice per year, a company

representative must visit each town in turn, and then return home.

Bordeaux

870 Calais

641 543 Dijon

550 751 192 Lyons

649 1067 507 316 Marseille

457 421 297 445 761 Orléans

247 625 515 431 733 212 Poitiers

519 803 244 59 309 392 421 St-Etienne

244 996 726 535 405 582 435 582 Toulouse

a Use the nearest neighbour algorithm to find a Hamiltonian cycle between all of the towns,

beginning and ending at Toulouse.

b Use the nearest neighbour algorithm to find a Hamiltonian cycle between all of the towns,

beginning and ending at Calais.

c Which town, Toulouse or Calais, would be the preferred home town for the representative in

order to minimise travel?

8

E

CD

A B

9
11

77

8

10
9

4 5
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NP PROBLEMSTHEORY OF KNOWLEDGE

In , the TSP was solved

for visiting nodes, using

a group of computers taking a

total of CPU-years.

2006
85 900

136

140 GRAPH THEORY (Chapter 2)

A Turing machine is an imaginary device invented by Alan Turing in 1936 as a hypothetical

representation of a computer. It is designed to help computer scientists understand the limits of

mechanical computation. In particular, they are used to consider the time a computer would require

to perform the operations necessary to solve a problem.

solution would be to try all
(n¡ 1)!

2
ordered combinations

of nodes. An algorithm checking every possibility is therefore

said to have order n!, written O(n!).

We can show that any factorial or exponential will grow faster

than any polynomial, since lim
n!1

nk

n!
= lim

n!1
nk

en
= 0 for

all k. This means that problems with factorial or exponential

order require increasingly more computations than problems

with polynomial order.

1 How long would it take a computer to test all Hamiltonian cycles in a complete, weighted

graph with 30 vertices?

A computer algorithm can only be efficient if it can run in polynomial time on a Turing machine,

which means it must have polynomial order O(nk). Computer scientists can hence sort problems

into a number of classes, including:

² a problem which can be solved in polynomial time on a deterministic Turing machine belong

to the complexity class P

² a problem for which a given solution can be verified as correct in polynomial time belong to

the complexity class NP

² a problem which requires at least as much computational time to solve as the hardest problem

in NP, is said to be NP-hard

² a problem which is in NP and which is NP-hard, is said to be NP-complete.

For example:

² The Chinese Postman Problem (CPP) is a P problem.

² The Travelling Salesman Problem (TSP) is an NP-complete problem.

² The New York Street Sweeper Problem (NYSSP) is a variant of the Chinese Postman Problem

(CPP) in which the edges of the graph are directed. This means they can only be travelled in

one direction. The NYSSP is an NP-complete problem.

2 Is it reasonable that a simply posed solvable problem should not be solvable in polynomial

time?

3 Why should extra constraints on a problem make it harder to solve? For example, consider

the NYSSP and the CPP.

4 How can a problem be categorised as NP-hard?

Suppose we are solving the TSP for n nodes. The most direct
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GRAPH THEORY (Chapter 2) 141

Given the huge time and cost of finding guaranteed optimal solutions to the TSP, a huge amount

of research has been done on approximate solutions, or solutions which are within a given bound

of being optimal. In 1976, Nicos Christofides of Imperial College, London, developed an algorithm

which produces routes guaranteed to be at most 50% longer than the shortest route. It then took a

further 35 years before an improvement was made, and that was so extraordinarily tiny as to have

no practical benefit. Around the world, mathematicians and computer scientists continue to work on

this problem, hoping to find more powerful results.

5 Is there benefit in pursuing exact solutions to problems like the TSP if approximate solutions

are far easier to obtain?

6 At what point should we consider an approximate solution “good enough”?

The P = NP problem posed by Stephen Cook in 1971 is one of the most important unsolved

problems in computer science. It questions whether the classes P and NP are equivalent, or in other

words whether problems whose solutions can be easily verified by a computer, can also be easily

solved by a computer. If there exists a polynomial algorithm for any NP-complete problem, then

there exist polynomial algorithms for all NP-complete problems.

It is reasonably well thought that P 6= NP. However, on the assumption that P = NP:

7 How can a polynomial algorithm for one NP problem assist in finding algorithms for the rest?

8 What ramifications are there for mathematical research in the future?
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REVIEW SET A

Octal is base .8

142

1 Use the Principle of Mathematical Induction to prove that 7n + 3n + 2 is divisible by 4 for

all n 2 N .

2 Find a closed form solution for the recurrence relation an+1 =
n+ 2

n+ 1
an, n > 0, a0 = 1.

Prove your result by induction.

3 Consider the recurrence relation a0 = 3, an = 4an¡1 ¡ 8, n > 1.

a Calculate the first five terms of the sequence.

b Find a closed form solution, proving your result by induction.

4 A radioactive isotope decays by 2:2% every week. Initially there are a0 grams of the substance

in a sample.

a Write, in terms of a0, the quantity of isotope remaining after:

i 1 week ii 5 weeks.

b Find and solve a recurrence relation for the amount of isotope remaining after n weeks.

c What initial mass would be necessary for 1:7 g to be remaining after 10 weeks?

5 Find the closed form solution for each recurrence relation:

a an = 4an¡1 ¡ 3an¡2, n > 2 with a0 = 1, a1 = ¡1

b an = 4an¡1 ¡ 4an¡2, n > 2 with a0 = 1, a1 = ¡1

c an = 4an¡1 ¡ 5an¡2, n > 2 with a0 = 0, a1 = 1.

6 Consider a, b 2 Z +. Show that if 3 j (a2 + b2) then 3 j a and 3 j b, but if 5 j (a2 + b2)

then 5 need not necessarily divide either a or b.

7 a Prove that any integer of the form 6m+ 5, m 2 Z , is also of the form 3n + 2, n 2 Z .

b Provide a counter example to show that the converse of a is not true.

8 Convert 1445 from base 5 into:

a binary b octal.

9 Prove that the product of any five consecutive integers is

divisible by 120.

10 a Use the Euclidean algorithm to find the greatest

divisor of 552 and 208.

b Hence or otherwise, find two integers m and n such

that 552m ¡ 208n = 8.

11 a Let n 2 Z +, n > 2, and let m = (n+1)!+2. Show that m is even and that 3 j (m+1).

b Let n 2 Z +, n > 3, and let m = (n+2)!+2. Show that m is even and that 3 j (m+1)

and 4 j (m + 2).

c Prove that there is a sequence of n numbers that are all composite.

12 Find the prime factorisation of:

a 1040 b 18 360 c 19 845

13 Find:

a 2312 (mod 5) b
30P
k=1

k! (mod 20)
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143

14 Prove that for any prime p > 5, 12 j p2 ¡ 1.

15 If a and b are relatively prime, show that for any c 2 Z +, gcd(a, bc) = gcd(a, c).

16 a Consider a three-digit number of the form (bba). If the sum of its digits is divisible by 12,

show that the number itself is divisible by 12.

b Consider a three-digit number of the form (bab). If the number itself and the sum of its

digits is divisible by k 2 Z +, k > 1, show that the only possible values of k less than 10
are 3 and 9, or a common divisor of a and b.

17 Solve: 57x ´ 20 (mod13).

18 a Given n 6´ 0 (mod5), show that n2 ´ §1 (mod5).

b Hence, prove that n5 + 5n3 + 4n is divisible by 5 for all n 2 Z +.

19 Solve this system using the Chinese Remainder Theorem: x ´ 2 (mod4), x ´ 4 (mod 5).

20 Show that if
p

6 can be written in the form
p

6 =
a

b
where a, b 2 Z + are both relatively

prime, then a must be an even number.

Hence prove that
p

6 is irrational.

21 Use FLT to find the remainder when 1187 + 3 is divided by 17.

22 Consider a rectangular garden 36 m wide and 44 m long, planted with 100 trees. Prove there

exists a 4 m by 4 m square area in the garden which contains at least two trees.

23 If x, y, z, and t are any four distinct integers, prove that

(x ¡ y)(x ¡ z)(x ¡ t)(y ¡ z)(y ¡ t)(z ¡ t) ´ 0 (mod 3).

24 For which values of m are the following graphs bipartite?

a Km b Cm c Wm

25 Let G be a graph with v vertices and e edges. Let M be the maximum degree of the vertices

and let m be the minimum degree of the vertices. Show that m 6
2e

v
6 M .

26 How many edges does the complement of Wn have?

27 For each of the following graphs:

i Construct an adjacency table.

ii State whether the graph is bipartite. If it is, draw it as clearly bipartite.

a b c

d e
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28 Find the number of paths between two given different vertices in which have length:

a 2 b 3 c

29 A simple bipartite graph G has an odd number of vertices.

Prove that it cannot be Hamiltonian.

30 Determine whether there exist simple graphs with 12 vertices and 28 edges in which the degree

of each vertex is:

a either 3 or 4 b either 5 or 6.

31 Suppose that a connected planar simple graph with v vertices and e edges contains no cycles of

length 4 or less. Show e 6
5v ¡ 10

3
.

32 A connected planar graph has 8 vertices, each of degree 3. How many faces does it have?

33 Use the breadth first search starting at O to find a spanning

tree for the graph alongside:

34 Find a minimum weight spanning tree for the graph

shown using Kruskal’s algorithm.

35 Find the minimum weight path (minimum connector)

from X to Y using Dijkstra’s algorithm.

36 The graph alongside is to be solved for the Travelling

Salesman Problem.

a Find a minimum spanning tree for the graph and

hence find an upper bound for the TSP.

b Improve the upper bound by finding a

Hamiltonian cycle.

c Delete each vertex in turn, and hence find the

best lower bound.

d Solve the TSP.

A

C

B

O

17

15

19

25

24

26
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S

12
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14
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REVIEW SET B

1 Use the Principle of Mathematical Induction to prove that 2n < n! for n > 4, n 2 Z +.

2 Consider the recurrence relation Lk+2 = Lk+1 + Lk with L1 = 1 and L2 = 2.

a Write down the first 10 terms of the sequence.

b Determine
nP

k=1

Lk for n = 1, 2, 3, 4, 5, and postulate a closed form solution for
nP

k=1

Lk

in terms of other Lj .

c Prove your result in b by induction.

3 A savings account has E4000 balance. The account earns 5% per annum compounded monthly,

and at the end of each month an additional E100 is added to the account.

Let an be the amount in the account after n months.

a Find a0, a1, a2, and a3.

b Find and solve a recurrence relation for an, n 2 N .

c Calculate the amount in the account after 2:5 years.

d How long will it take for the investment to reach E10 000?

4 Consider the third-degree homogeneous recurrence relation with constant coefficients:

b Conjecture a closed form solution for an, n 2 N .

c Use strong induction to prove your conjecture.

5 Find the closed form solution for the recurrence relation an+2 = 2an+1 ¡ 3an, n 2 N with

a0 = 2, a1 = 2.

6 Prove that 3 j (a3 + 5a) for all a 2 Z +.

7 Prove or disprove: If n2 is divisible by 12, then so is n.

8 Prove that n2 ¡ 1 is either divisible by 4, or is of the form 4k + 3.

9 Let a and b be integers such that gcd(a, b) = 1. Find the possible values of:

b gcd(2a + b, a + 2b).

10 Using Euclid’s algorithm, find all integer pairs x and y such that 17x + 31y = 1.

11 Find, where possible, all x, y 2 Z such that:

a 12x ¡ 15y = 42 b 32x + 24y = 144 c 18x + 11y = 196

12 Convert 7 203 8429 from base 9 to base 3.

13 Show that 30 j (n5 ¡ n) for all n 2 Z +.

14 Show that the modular equation 22x ´ 41 (mod17) has a unique solution modulo 17.

Find the solution.

15 Find the smallest positive integer n such that n ´ 3 (mod19) and n ´ 2 (mod 11).

16 Find the smallest integer a > 2 such that 2 j a, 3 j (a + 2), 5 j (a + 3), and

17 divisible by 3?

a0 = 0, a1 = 0, a2 = 2, an ¡ 3an¡1 + 3an¡2 ¡ an¡3 = 0, n > 3.

a Calculate a3, a4, a5, and a6.

7 j (a + 4).

Is 435(47) ¡ 50

a gcd(a + b, a + 2b)
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18 Consider the statement a2 ´ b2 (modn) ) a ´ b (modn).

a Show that the statement is false by providing a counter example.

b Is the converse statement true?

c Is the statement a2 ´ b2 (modn) ) a ´ b (modn) true when n is a prime number?

19 If ab ´ 0 (modn), what are the conditions on n which require that either a ´ 0 (modn) or

b ´ 0 (modn)?

20 Prove that for all n 2 Z +, n5 ¡ 37n3 + 36n is divisible by 4.

21 Use FLT to find the value of
p¡1P
k=1

kp (mod p) where p is an odd prime.

22 Prove that in a hand of five cards taken from a standard pack of 52, there will be at least two

cards of the same suit.

23 Nine distinct points lie in the interior of the unit square. No three of the points are collinear.

Prove that there is a triangle formed by 3 of the points which has an area of not more than 1
8 .

24 State the size and order of each of the following graphs:

a Km b Cm c Wm d Km, n

25 Colin and Bridget invited three other couples out to

dinner. On arrival at the restaurant some people shook

hands. No one shook hands with themselves or their

partner, and no-one shook hands with anyone more

than once.

Colin asked everyone how many hands they shook,

and received seven different answers.

How many hands did:

a Bridget shake b Colin shake?

26 Represent the following graphs by their adjacency tables:

a K4 b K1, 4 c K2, 3

27 A self-complementary graph is a graph which is its own complement.

Find a self-complementary graph with:

a 4 vertices b 5 vertices.

28 How many paths are there between (any) two adjacent vertices in K3, 3, which have length:

a 2 b 3 c 4?

29 a For which values of m, n does Km, n have:

i a Hamiltonian cycle ii an Eulerian circuit iii both?

b Give an example for the case in a iii.

30 Find the fewest number of vertices required to construct a simple connected graph with at least

500 edges.

31 How many faces does a 4-regular connected planar graph with 6 vertices have?
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32 Given a simple connected 3-regular graph G is planar, find a relationship between the faces

of G and its order. Verify that K4 satisfies this relationship.

33 Use the breadth first search starting at O to find a spanning

tree for the graph shown.

34 The network alongside shows the

connecting roads between towns A

and B. The weights on the edges

represent distances in kilometres.

Find the length of the shortest

path from A to B using Dijkstra’s

algorithm.

35 Solve the Chinese Postman Problem for the graph

shown. Assume the postman starts and finishes at O.

36 The graph alongside is to be solved for the Travelling

Salesman Problem.

a Find a minimum spanning tree for the graph and

hence find an upper bound for the TSP.

b Improve the upper bound by finding a

Hamiltonian cycle.

c Delete each vertex in turn, and hence find the

best lower bound.

d Solve the TSP.

O

A

B

25

18

16

19

21

32 10 38

13

9

12

29
30

32

51

18

7

5
41

15

20 24

16

10

19

18

11 10

15

13

12
10

12 14

16

O

A

B

CD

E

8

10

13
11

6
13

3

7

20
18

O
A

B

C

D

PRINTABLE

DIAGRAMS

IB HL OPT

Discrete Mathematicsmagentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0

Y:\HAESE\IB_HL_OPT-DM\IB_HL_OPT-DM_02\147IB_HL_OPT-DM_02.cdr Thursday, 20 February 2014 6:29:39 PM BRIAN



148

REVIEW SET C

1 Consider the recurrence relation an = an¡1 + n ¡ 2, n 2 Z +, a0 = 2.

a Find the first five terms of the sequence described by the recurrence relation.

b Conjecture a closed form solution.

c Use induction to prove your conjecture.

d Find a20.

2 Prove by induction that the (n + 1)th member of the Fibonacci sequence is given by

fn+1 =

¥
n

2

¦P
k=0

¡
n¡k
k

¢
, where

j
n

2

k
is the greatest integer less than or equal to

n

2
.

Hint: You may need to consider the cases of odd n and even n separately.

3 A home loan of $120 000 is taken out with fixed interest rate 4:9% p.a. compounded monthly.

The loan is to be repaid with regular monthly repayments. The first repayment is due one month

after the loan is taken out, after the first amount of interest is calculated and added to the loan.

Let an be the outstanding value of the loan after n months.

a Suppose the loan is repaid with $1000 every month.

i Calculate a0, a1, a2, and a3.

ii Write an in terms of an¡1, n > 1, and state an appropriate initial condition for the

recurrence relation.

iii Find a closed form solution for the recurrence relation.

iv How long will it take for the loan to be repaid?

v Find the total interest paid on the loan.

b Now suppose instead that the loan is to be repaid over 10 years.

i Calculate the regular monthly repayment.

ii Find the total interest paid on the loan.

4 Find a closed form solution for a0 = 1, an = nan¡1 + n!3n, n 2 Z +.

5 A child is playing with a set of coloured blocks,

placing them end to end to form a long line. There are

three types of blocks: red blocks have length 1 unit,

blue blocks have length 2 units, and green blocks have

length 3 units.

a Find a recurrence relation for the number of

different lines of blocks of length n units.

b How many different block arrangements of length

10 units are there?

6

7

For n 2 Z +, prove that if n2 is divisible by 5, then so is n.

Suppose n 2 Z +.

a Prove that n(7n2 ¡ 1) is even.

b Prove that 3 j n(7n2 ¡ 1).

c Hence, prove that 6 j n(7n2 ¡ 1).

d Prove the result in c directly, by considering six exhaustive cases for the form of n.
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8 Suppose p 2 Z +. Prove that if p2 has 7 as a factor, then p has 7 as a factor. Hence prove that

the real number
p

7 is irrational.

9 Suppose d = gcd(378, 168). Use Euclid’s algorithm to find d, and hence find one pair of

integers x and y such that d = 378x + 168y.

10 Prove that a £ b = gcd(a, b) £ lcm(a, b) for any positive integers a and b.

11 I wish to buy 50 statues for the botanical gardens.

Small statues cost $40 each, medium statues cost $100
each, and large statues cost $250 each. I have $11 240
to spend. If I spend all of the allocated money, how

many statues of each size do I buy?

12 Given that p is prime, prove that:

a p j a3 ) p3 j a3 b p j a3 ) p j a
13 Prove by induction that for n 2 Z +, 6n ´ 1 + 5n (mod 25).

14 Determine, with reasons, the number of incongruent solutions modulo 51 to the equation

165x ´ 105 (mod51). Find the solutions.

15 Determine a divisibility test for 36.

Is 14 975 028 526 645 824 divisible by 36?

16 Use the Chinese Remainder Theorem to solve 19x ´ 99 (mod 260).

17 Solve: 14x + 17 ´ 27 (mod6).

18 What is the units digit of 32014?

19 Suppose Nk is the kth repunit, so N1 = 1, N2 = 11, N3 = 111, and so on.

If m, n 2 Z + are such that m < n and m j n, deduce that Nm j Nn.

Hint: Nm and Nn can be written as geometric series.

20 Determine whether each of these integers is divisible by, 3, 7, 11, or 13.

a 2 504 304 b 1 703 702

21 Use FLT to find the last digit of the base 11 expansion of 780.

22 Prove that if 51 distinct numbers are chosen from the first 100 positive integers, then at least

two of the numbers are consecutive.

23 A set A contains fifteen distinct positive integers, each less than 200. Prove that A contains

two distinct subsets whose elements sum to the same total.

24 If G is a simple graph with 17 edges and its complement, G0, has 11 edges, how many vertices

does G have?

25 Show that if G is a bipartite simple graph with v vertices and e edges then e 6
v2

4
.
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26 Let G be a simple graph on 6 vertices.

a Give an example which shows that “if G does not contain a 3-cycle, then its complement

G0 does”.

b Assuming the statement in a is true, show that in any group of six people, there will always

be three who are mutually known to each other, or else are mutual strangers.

27 If G is a simple graph with at least two vertices, prove that G has two or more vertices of the

same degree.

28 Classify the following graphs as

i Eulerian, semi-Eulerian, or neither

ii Hamiltonian, semi-Hamiltonian but not Hamiltonian, or neither:

a K5 b K2, 3 c d

29 A simple graph G with v vertices and e edges has the same number of edges as its

complement G0.
a Find e in terms of v.

b Hence show that either v ´ 0 (mod4) or v ´ 1 (mod4).

d Draw such a graph G with v and e the smallest of the values found in c.

Draw also the complement G0.

30 Prove that v + f ¡ e = 2 for G a graph which is:

a a tree b a connected planar graph.

31 Let G be any simple connected planar graph with v > 3 vertices, f faces, and e edges.

a Explain why 3f 6 2e and hence explain why e 6 3v ¡ 6.

b If v = 11, determine whether or not it is possible for the complement G0 to also be planar.

32 Given that both a simple graph G and its complement G0 are trees, what is the order of G?

Sketch the graphs.

33 A sewerage network graphed alongside

needs to have all of its tunnels inspected.

The weights on the edges are their lengths

in metres.

a If there are entrances at each of the

nodes, where should the inspection

start and finish so that it requires

walking a minimum distance?

b State an inspection plan that covers

each tunnel only once.

c Suppose the inspector must start and finish his inspection at A.

i Which tunnel will be covered twice for him to travel the minimum distance?

ii What is the minimum distance that he must walk in this case?

A

B

C

D
E

126 146

74

95

133

147

110

c Find all possible values of the order v and corresponding size e of G with 1 6 v 6 20.
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Greek mathematicians more than 2000 years ago realised that progress in mathematical thinking could

be brought about by conscious formulation of the methods of abstraction and proof.

By considering a few examples, one might notice a certain common quality or pattern from which one

could predict a rule or formula for the general case. In mathematics this prediction is known as a

conjecture. Mathematicians love to find patterns, and try to understand why they occur.

Experiments and further examples might help to convince you that the conjecture is true. However,

problems will often contain extra information which can sometimes obscure the essential detail,

particularly in applied mathematics. Stripping this away is the process of abstraction.

a b a2 b2

1 2 1 4

3 5 9 25

4 5 16 25

5 7 25 49

6 9 36 81

For example, by considering the given table of values one may conjecture:

“If a and b are real numbers then a < b implies that a2 < b2.”

However, on observing that ¡2 < 1 but (¡2)2 6< 12 we have a

In the light of this we reformulate and refine our conjecture:

“If a and b are positive real numbers then a < b implies a2 < b2.”

The difficulty is that this process might continue with reformulations, counter-examples, and revised

conjectures indefinitely. At what point are we certain that the conjecture is true? A proof is a flawless

logical argument which leaves no doubt that the conjecture is indeed a truth. If we have a proof then the

conjecture can be called a theorem.

Mathematics has evolved to accept certain types of arguments as valid proofs. They include a mixture

of both logic and calculation. Generally mathematicians like elegant, efficient proofs. It is common not

to write every minute detail. However, when you write a proof you should be prepared to expand and

justify every step if asked to do so.

We have already examined in the HL Core text, proof by the principle of mathematical induction.

Now we consider other methods.

DIRECT PROOF

In a direct proof we start with a known truth and by a succession of correct deductions finish with the

required result.

Example 1: Prove that if a, b 2 R then a < b ) a <
a+ b

2

Proof: a < b ) a

2
<

b

2
fas we are dividing by 2 which is > 0g

) a

2
+

a

2
<

a

2
+

b

2
fadding

a

2
to both sidesg

) a <
a+ b

2

Sometimes it is not possible to give a direct proof of the full result and so the different possible cases

(called exhaustive cases) need to be considered and proved separately.

APPENDIX: METHODS OF PROOF

APPENDIX 151

counter example.

IB HL OPT

Discrete Mathematicsmagentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0

Y:\HAESE\IB_HL_OPT-DM\IB_HL_OPT-DM_AA\151IB_HL_OPT-DM_AA.cdr Thursday, 20 February 2014 6:33:53 PM BRIAN



152 APPENDIX

Example 2: Prove the geometric progression: For n 2 Z , n > 0,

1 + r1 + r2 + :::: + rn =

8<
:

rn+1 ¡ 1

r ¡ 1
, r 6= 1

n + 1, r = 1

Proof: Case r = 1: 1 + r1 + r2 + :::: + rn

= 1 + 1 + 1 + :::: + 1 fn + 1 timesg
= n + 1

Case r 6= 1: Let Sn = 1 + r1 + r2 + :::: + rn.

Then rSn = r1 + r2 + r3 + :::: + rn+1

) rSn ¡ Sn = rn+1 ¡ 1 fafter cancellation of termsg
) (r ¡ 1)Sn = rn+1 ¡ 1

) Sn =
rn+1 ¡ 1

r ¡ 1
fdividing by r ¡ 1 since r 6= 1g

Example 3: Alice looks at Bob and Bob looks at Clare. Alice is married, but Clare is not. Prove

that a married person looks at an unmarried person.

Proof: We do not know whether Bob is married or not, so we consider the different (exhaustive)

cases:

Case: Bob is married. If Bob is married, then a married person (Bob) looks at an

unmarried person (Clare).

Case: Bob is unmarried. If Bob is unmarried, then a married person (Alice) looks at an

unmarried person (Bob).

Since we have considered all possible cases, the full result is proved.

EXERCISE

1 Let I =
p

2, which is irrational. Consider II and II
I

, and hence prove that an irrational number

to the power of an irrational number can be rational.

PROOF BY CONTRADICTION (AN INDIRECT PROOF)

In proof by contradiction we deliberately assume the opposite to what we are trying to prove. By a

series of correct steps we show that this is impossible, our assumption is false, and hence its opposite is

true.
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APPENDIX 153

Example 4: Consider Example 1 again but this time use proof by contradiction:

Prove that if a, b 2 R then a < b ) a <
a+ b

2
.

Proof (by contradiction):

For a < b, suppose that a >
a+ b

2

) 2a > 2
³
a+ b

2

´
fmultiplying both sides by 2g

) 2a > a + b

) a > b fsubtracting a from both sidesg
which is false.

Since the steps of the argument are correct, the supposition must be false and the alternative,

a <
a+ b

2
must be true.

Example 5: Prove that the solution of 3x = 8 is irrational.

Proof (by contradiction):

Suppose the solution of 3x = 8 is rational, or in other words, that x is rational. Notice that

x > 0.

) x =
p

q
where p, q 2 Z , q 6= 0 fand since x > 0, integers p, q > 0g

) 3
p

q = 8

)
µ

3
p

q

¶q

= 8q

) 3p = 8q

which is impossible since for the given possible values of p and q, 3p is always odd and 8q is

always even. Thus, the assumption is false and its opposite must be true. Hence x is irrational.

Example 6: Prove that no positive integers x and y exist such that x2 ¡ y2 = 1.

Proof (by contradiction):

Suppose x, y 2 Z + exist such that x2 ¡ y2 = 1.

) (x + y)(x ¡ y) = 1

) x + y = 1 and x ¡ y = 1| {z }
case 1

or x + y = ¡1 and x ¡ y = ¡1| {z }
case 2

) x = 1, y = 0 (from case 1) or x = ¡1, y = 0 (from case 2)

Both cases provide a contradiction to x, y > 0.

Thus, the supposition is false and its opposite is true.

There do not exist positive integers x and y such that x2 ¡ y2 = 1.

Indirect proof often seems cleverly contrived, especially if no direct proof is forthcoming. It is perhaps

more natural to seek a direct proof for the first attempt to prove a conjecture.

IB HL OPT 2ed
magentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0

Y:\HAESE\IB_HL_OPT-DM\IB_HL_OPT-DM_AA\153IB_HL_OPT-DM_AA.cdr Wednesday, 22 January 2014 12:50:07 PM BRIAN



154 APPENDIX

ERRORS IN PROOF

One must be careful not to make errors in algebra or reasoning. Examine carefully the following examples.

Example 7: Consider Example 5 again: Prove that the solution of 3x = 8 is irrational.

Invalid argument: 3x = 8

) log 3x = log 8

) x log 3 = log 8

) x =
log 8

log 3
where both log 8 and log 3 are irrational.

) x is irrational.

The last step is not valid. The argument that an irrational divided by an irrational is always

irrational is not correct. For example,
p

2p
2

= 1, and 1 is rational.

Dividing by zero is not a valid operation.
a

0
is not defined for any a 2 R , in particular 0

0 6= 1.

Example 8: Invalid “proof” that 5 = 2

0 = 0

) 0 £ 5 = 0 £ 2

) 0£ 5

0
=

0£ 2

0
fdividing through by 0g

) 5 = 2, which is clearly false.

This invalid step is not always obvious, as illustrated in the following example.

Example 9: Invalid “proof” that 0 = 1:

Suppose a = 1

) a2 = a

) a2 ¡ 1 = a ¡ 1

) (a + 1)(a ¡ 1) = a ¡ 1

) a + 1 = 1 .... (¤)

) a = 0

So, 0 = 1

The invalid step in the argument is (¤) where we divide both sides by a ¡ 1.

Since a = 1, a ¡ 1 = 0, and so we are dividing both sides by zero.

Another trap to be avoided is to begin by assuming the result we wish to prove is true. This readily leads

to invalid circular arguments.
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APPENDIX 155

Example 10: Prove without decimalisation that
p

3 ¡ 1 > 1p
2

.

Invalid argument:
p

3 ¡ 1 > 1p
2

) (
p

3 ¡ 1)2 >
³

1p
2

´2
fboth sides are > 0, so we can square themg

) 4 ¡ 2
p

3 > 1
2

) 7
2 > 2

p
3

) 7 > 4
p

3

) 72 > 48 fsquaring againg
) 49 > 48 which is true.

Hence
p

3 ¡ 1 > 1p
2

is true.

Although
p

3 ¡ 1 > 1p
2

is in fact true, the above argument is invalid because we began by

assuming the result.

A valid method of proof for
p

3 ¡ 1 > 1p
2

can be found by either:

² reversing the steps of the above argument, or by

² using proof by contradiction (supposing
p

3 ¡ 1 6 1p
2

).

It is important to distinguish errors in proof from a false conjecture.

Consider the table alongside, which shows values of n2 ¡ n + 41 for various

values of n 2 N .

From the many examples given, one might conjecture:

“For all natural numbers n, n2 ¡ n + 41 is prime.”

This conjecture is in fact false.

For example, for n = 41, n2 ¡ n + 41 = 412 is clearly not prime.

n n2 ¡ n + 41

1 41

2 43

3 47

4 53

5 61

6 71

7 83

8 97

9 113

10 131

11 151

12 173

13 197
¢ ¢ ¢ ¢ ¢ ¢
30 911
¢ ¢ ¢ ¢ ¢ ¢
99 9743
¢ ¢ ¢ ¢ ¢ ¢

It takes only one

counter-example to prove a

conjecture is false.
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156 APPENDIX

IMPLICATIONS AND THEIR CONVERSE

If .... then ....

Many statements in mathematics take the form of an implication “If A then B”, where A and B are

themselves statements. The statement A is known as the hypothesis. The statement B is known as the

conclusion.

Implications can be written in many forms in addition to “If A then B”. For example, the following all

have the same meaning:

A

8>>><
>>>:

implies

so

hence

thus

therefore

9>>>=
>>>; B.

Given a statement of the form “If A then B”, we can write a converse statement “If B then A”.

If we know the truth, or otherwise, of a given statement, we can say nothing about the truth of the

converse. It could be true or false.

A statement and its converse are said to be (logically) independent.

For example, suppose x is an integer.

² The statement “If x is odd, then 2x is even” is true, but its converse “If 2x is even, then x is

odd” is false.

² The statement “If 2x is even, then x is odd” is false, but its converse “If x is odd, then 2x is

even” is true.

² The statement “If x > 1, then lnx > 0” is true, and its converse “If lnx > 0, then x > 1”

is also true.

² The statement “If x = 5, then x2 = 16” is false, and its converse “If x2 = 16, then x = 5”

is also false.

EXERCISE

Prove or disprove:

1 If x is rational then 2x 6= 3.

2 If 2x 6= 3 then x is rational.

EQUIVALENCE

Some conjectures with two statements A and B involve logical equivalence or simply equivalence.

We say A is equivalent to B, or A is true if and only if B is true.

The phrase “if and only if

A , B means A ) B and B ) A

” is often written as “iff ” or ,.
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APPENDIX 157

In order to prove an equivalence, we need to prove both implications: A ) B and B ) A.

For example: x2 = 9 , x = 3 is a false statement.

x = 3 ) x2 = 9 is true

but x2 = 9 6) x = 3 as x may be ¡3.

Example 11: Prove that (n + 2)2 ¡ n2 is a multiple of 8 , n is odd.

Proof: ()) (n + 2)2 ¡ n2 is a multiple of 8

) n2 + 4n + 4 ¡ n2 = 8a for some integer a

) 4n + 4 = 8a

) n + 1 = 2a

) n = 2a ¡ 1

) n is odd.

(() n is odd

) n = 2a ¡ 1 for some integer a

) n + 1 = 2a

) 4n + 4 = 8a

) (n2 + 4n + 4) ¡ n2 = 8a

) (n + 2)2 ¡ n2 is a multiple of 8.

In the above example the ()) argument is clearly reversible to give the (() argument. However, this is

not always the case.

Example 12: Prove that for all x 2 Z +, x is not divisible by 3 , x2 ¡ 1 is divisible by 3.

Proof: ()) x is not divisible by 3

) either x = 3k + 1 or x = 3k + 2 for some k 2 Z + [ f0g
) x2 ¡ 1 = 9k2 + 6k or 9k2 + 12k + 3

= 3(3k2 + 2) or 3(3k2 + 4k + 1)

) x2 ¡ 1 is divisible by 3.

(() x2 ¡ 1 is divisible by 3

) 3 j x2 ¡ 1

) 3 j (x + 1)(x ¡ 1)

) 3 j (x + 1) or 3 j (x ¡ 1) fas 3 is a prime numberg
) 3 - x

or in other words, x is not divisible by 3.
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158 APPENDIX

NEGATION

For any given statement A, we write not A or :A to represent the negation of the statement A.

For example: A :A
x > 0 x 6 0

x is prime x is not prime

x is an integer x is not an integer

For x 2 R : x is rational x is irrational

For z 2 C : z is real z = a + bi, a, b 2 R , b 6= 0

For x 2 Z + [ f0g: x is a multiple of 3 x is not a multiple of 3
or

x = 3k + 1 or 3k + 2 for k 2 Z + [ f0g

PROOF OF THE CONTRAPOSITIVE

To prove the statement “If A then B”, we can provide a direct proof, or we can prove the logically

equivalent contrapositive statement “If not B, then not A” which we can also write as “If :B,

then :A”.

For example, the statement “If it is Jon’s bicycle, then it is blue”

is logically equivalent to “If that bicycle is not blue, then it is not Jon’s”.

Example 13: Prove that for a, b 2 R , “ab is irrational ) either a or b is irrational”.

Proof using contrapositive:

a and b are both rational ) a =
p

q
and b =

r

s
where p, q, r, s 2 Z , q 6= 0, s 6= 0

) ab =

µ
p

q

¶³
r

s

´
=

pr

qs
fwhere qs 6= 0, since q, s 6= 0g

) ab is rational fsince pr, qs 2 Z g
Thus ab is irrational ) either a or b is irrational.

Example 14: Prove that if n is a positive integer of the form 3k + 2, k > 0, k 2 Z , then n is not

a square.

Proof using contrapositive:

If n is a square then

n has one of the forms (3a)2, (3a + 1)2 or (3a + 2)2, where a 2 Z + [ f0g.

) n = 9a2, 9a2 + 6a + 1 or 9a2 + 12a + 4

) n = 3(3a2), 3(3a2 + 2a) + 1 or 3(3a2 + 4a + 1) + 1

) n has the form 3k or 3k + 1 only, where k 2 Z + [ f0g
) n does not have form 3k + 2.

Thus if n is a positive integer of the form 3k + 2, k > 0, k 2 Z , then n is not a square.
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APPENDIX 159

USING PREVIOUS RESULTS

In mathematics we build up collections of important and useful results, each depending on previously

proven statements.

Example 15: Prove the conjecture:

“The recurring decimal 0:9 = 0:999 999 99:::: is exactly equal to 1”.

Proof (by contradiction):

Suppose 0:9 < 1

) 0:9 <
0:9 + 1

2
fWe proved earlier that a < b ) a <

a+ b

2
g

) 0:9 <
1:9

2

½
Ordinary division:

) 0:9 < 0:9 clearly a contradiction

Therefore the supposition is false, and so 0:9 > 1 is true.

Since, 0:9 > 1 is absurd, 0:9 = 1.

Proof (Direct Proof):

0:9 = 0:999 999 99::::

= 0:9 + 0:09 + 0:009 + 0:0009 + ::::

= 0:9
¡
1 + 1

10 + 1
100 + 1

1000 + ::::
¢

= 9
10

µ1P
i=0

¡
1
10

¢i¶

= 9
10

Ã
1

1¡ 1
10

!
fUsing the previously proved Geometric Series

with r = 1
10 and

¯̄
1
10

¯̄
< 1g

= 9
10 £ 10

9

= 1

2 1:999 999 99::::

0:999 999 99::::

¾
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160 APPENDIX

AXIOMS AND OCCAM’S RAZORTHEORY OF KNOWLEDGE

In order to understand complicated concepts, we often try to break them down into simpler

components. But when mathematicians try to understand the foundations of a particular branch

of the subject, they consider the question “What is the minimal set of assumptions from which all

other results can be deduced or proved?” The assumptions they make are called axioms. Whether

the axioms accurately reflect properties observed in the physical world is less important to pure

mathematicians than the theory which can be developed and deduced from the axioms.

Occam’s razor is a principle of economy that among competing hypotheses, the one that makes the

fewest assumptions should be selected.

1 What value does Occam’s razor have in understanding the long-held belief that the world was

flat?

2 Is the simplest explanation to something always true?

3 Is it reasonable to construct a set of mathematical axioms under Occam’s razor?

One of the most famous examples of a set of axioms is given by Euclid in his set of 13 books called

Elements. He gives five axioms, which he calls “postulates”, as the basis for his study of Geometry:

1. Any two points can be joined by a straight line.

2. Any straight line segment can be extended indefinitely in a straight line.

3. Given any straight line segment, a circle can be drawn having the segment as radius and one

endpoint as centre.

4. All right angles are congruent.

5. Parallel postulate: If two lines intersect a third in such a way that the sum of the inner angles

on one side is less than two right angles, then the two lines inevitably must intersect each other

on that side if extended far enough.

4 Is the parallel postulate genuinely an axiom, or can it be proved from the others?

5 What happens if you change the list of axioms or do not include the parallel postulate?

6 What other areas of mathematics can we reduce to a concise list of axioms?

IB HL OPT 2ed
magentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0

Y:\HAESE\IB_HL_OPT-DM\IB_HL_OPT-DM_AA\160IB_HL_OPT-DM_AA.cdr Wednesday, 22 January 2014 12:52:53 PM BRIAN



WORKED SOLUTIONS 161

EXERCISE 1A.1

1 a Proof: (By the Principle of Mathematical Induction)

Pn is that “3n > 7n” for n > 3, n 2 Z+.

(1) If n = 3, 33 > 7£ 3 ) 27 > 21 which is true.

) P3 is true.

(2) If Pk is true, then 3k > 7k, k > 3 .... (¤ )

Now 3k+1 ¡ 7(k + 1)

= 3£ 3k ¡ 7k ¡ 7

> 3(7k)¡ 7k ¡ 7 fusing ¤ g
= 21k ¡ 7k ¡ 7

= 14k ¡ 7

= 7(2k ¡ 1)

> 7(6¡ 1) fas k > 3g
= 35

> 0

) 3k+1 > 7(k + 1)

Thus P3 is true, and Pk+1 is true whenever Pk is true.

) Pn is true for n > 3, n 2 Z +.

b Proof: (By the Principle of Mathematical Induction)

Pn is that “nn > n!” for n > 2, n 2 Z +.

(1) If n = 2, 22 > 2! is true f4 > 2g
) P2 is true.

(2) If Pk is true, then kk > k!, k > 2 .... ( ¤ )

Now
(k + 1)k+1

(k + 1)!

=
(k + 1)k(k + 1)

(k + 1)k!

>
kk

k!
fas k + 1 > kg

> 1 fusing ¤ g
) (k + 1)k+1 > (k + 1)!

Thus P2 is true, and Pk+1 is true whenever Pk is true.

) Pn is true for n > 2, n 2 Z +.

c Proof: (By the Principle of Mathematical Induction)

Pn is that “3n < n!” for n > 7, n 2 Z +.

(1) If n = 7, 37 < 7! is true as

37 = 2187 and 7! = 5040
) P7 is true.

(2) If Pk is true, then 3k < k!, k > 7 .... (¤ )

Now (k + 1)!¡ 3k+1

= (k + 1)k!¡ 3k+1

> (k + 1)3k ¡ 3k+1 fusing ¤ g
= 3k(k + 1¡ 3)

= 3k(k ¡ 2)

> 0 fas k > 7g
) 3k+1 < (k + 1)!

Thus P7 is true, and Pk+1 is true whenever Pk is true.

) Pn is true for n > 7, n 2 Z +.

2 a Proof: (By the Principle of Mathematical Induction)

Pn is that “n3 ¡ 4n is divisible by 3” for all n > 3,

n 2 Z+.

(1) If n = 3, 33 ¡ 4£ 3 = 27¡ 12 = 15 = 5£ 3
) P3 is true.

(2) If Pk is true, then

k3 ¡ 4k = 3A for some A 2 Z , k > 3 .... (¤ )

Now (k + 1)3 ¡ 4(k + 1)

= k3 + 3k2 + 3k + 1¡ 4k ¡ 4

= (k3 ¡ 4k) + (3k2 + 3k ¡ 3)

= 3A+ 3(k2 + k ¡ 1) fusing ¤ g
= 3[A+ k2 + k ¡ 1] where A, k 2 Z

) (k + 1)3 ¡ 4(k + 1) is divisible by 3.

Thus P3 is true, and Pk+1 is true whenever Pk is true.

) Pn is true for n > 3, n 2 Z +.

b Proof: (By the Principle of Mathematical Induction)

Pn is that “5n+1 + 2(3n) + 1 is divisible by 8” for all

n 2 Z+.

(1) If n = 1, 52 + 2(3) + 1 = 25 + 6 + 1 = 32 which

is divisible by 8 f8£ 4 = 32g ) P1 is true.

(2) If Pk is true, then

5k+1 + 2(3k) + 1 = 8A for some A 2 Z .... ( ¤ )

Now 5[k+1]+1 + 2(3k+1) + 1

= 5£ 5k+1 + 3£ 2(3k) + 1

= 5[8A¡ 2(3k)¡ 1] + 6(3k) + 1 fusing ¤ g
= 40A¡ 10(3k)¡ 5 + 6(3k) + 1

= 40A¡ 4(3k)¡ 4

= 8

·
5A¡ 3k + 1

2

¸
where

3k + 1

2
2 Z fas 3k is odd ) 3k + 1 is even

) 3k + 1

2
2 Z g

Thus 5A¡ 3k + 1

2
2 Z and 5[k+1]+1+2(3k+1)+1

is divisible by 8.

Thus P1 is true, and Pk+1 is true whenever Pk is true.

) Pn is true for all n 2 Z +.

c Proof: (By the Principle of Mathematical Induction)

Pn is that “73 j (8n+2 + 92n+1)” for all n 2 Z +.

(1) If n = 1, 8n+2 + 92n+1

= 83 + 93

= 1241

= 73£ 17 ) P1 is true.

(2) If Pk is true, then

8k+2 + 92k+1 = 73A for some A 2 Z .... ( ¤ )

Now 8[k+1]+2 + 92[k+1]+1

= 8£ 8k+2 + 81£ 92k+1

= 8£ 8k+2 + 81(73A¡ 8k+2) fusing ¤ g
= 81(73A) + 8k+2(8¡ 81)

= 81(73A)¡ 73(8k+2)

= 73(81A¡ 8k+2) where 81A¡ 8k+2 2 Z

) 73 j (8[k+1]+2 + 92[k+1]+1)

Thus P1 is true, and Pk+1 is true whenever Pk is true.

) Pn is true for all n 2 Z +.

Worked Solutions
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3 a The nth repunit is

11111::::1| {z }
n of these

= 1 + 101 + 102 + 103 + ::::+ 10n¡1

which is a geometric series with u1 = 1 and r = 10

=
1(10n ¡ 1)

10 ¡ 1

n
Sn =

u1(r
n ¡ 1)

r ¡ 1

o
=

10n ¡ 1

9
, n 2 Z+

b The first repunit is 1 which is not a composite. So, the

statement is false.

c Ali’s statement is true.
We use “if »B )»A, then A ) B”.
So we need to prove that:

“if a repunit does not have a prime number of digits then the

repunit is not prime”.

Proof:
Firstly 1 is not a prime.

If the nth repunit does not have a prime number of digits then

n = ab where a, b > 1.
Let the nth repunit be k.

) k = 111::::1| {z }
a of them

111::::1| {z }
a of them

:::: 111::::1| {z }
a of them| {z }

b lots of a

) k = (111::::1)[1 + 10a + 102a + ::::+ 10(b¡1)a]

) k =

³
10n ¡ 1

9

´µ
(10a)b ¡ 1

10a ¡ 1

¶
) k is not a prime

d Joachim’s claim is false as the third repunit is 111 and

111 = 3£ 37.

4 Proof: (By the Principle of Mathematical Induction)

Pn is that “3n > 5n2 ¡ 6n” for all n > 3, n 2 Z+.

(1) If n = 3, 33 > 45¡ 18

) 27 > 27

) P3 is true.

(2) If Pk is true, then 3k > 5k2 ¡ 6k, k > 3 .... ( ¤ )

Now 3k+1 ¡ (5[k + 1]2 ¡ 6[k + 1])

= 3(3k)¡ 5k2 ¡ 10k ¡ 5 + 6k + 6

> 3(5k2 ¡ 6k)¡ 5k2 ¡ 4k + 1 fusing ¤ g
= 10k2 ¡ 22k + 1

= 2k(5k ¡ 11) + 1

> 2(3)(4) + 1 fas k > 3g
= 25

> 0

) 3k+1 > 5[k + 1]2 ¡ 6[k + 1]

Thus P3 is true, and Pk+1 is true whenever Pk is true.

) Pn is true for n > 3, n 2 Z +.

EXERCISE 1A.2

1 Proof:

(By the Principle of Mathematical Induction (strong form))

Pn is that “if a1 = 1, a2 = 2 and an+2 = an+1 + an

for all n 2 Z+, then an 6
¡
5
3

¢n
”.

(1) If n = 1, a1 6
¡
5
3

¢1
, that is, 1 6 5

3
is true

) P1 is true.

(2) Assume that ar 6
¡
5
3

¢r
is true for all r 6 k

) ar 6
¡
5
3

¢r
for r = 1, 2, 3, ...., k .... ( ¤ )

Now ak+1 = ak + ak¡1

6
¡
5
3

¢k
+
¡
5
3

¢k¡1 fusing ¤ g

=
¡
5
3

¢k+1 £ 3
5
+ 9

25

¤
=
¡
5
3

¢k+1 £ 24
25

¤
6
¡
5
3

¢k+1

Thus P1 is true, and the assumed result for

r = 1, 2, 3, ...., k ) the same result for r = k + 1.

) Pn is true for all n 2 Z +.

2 Proof:

(By the Principle of Mathematical Induction (strong form))

Pn is that “if b1 = b2 = 1 and bn = 2bn¡1 + bn¡2

for all n > 3, n 2 Z +, then bn is odd”.

(1) b1 and b2 are odd

) P1 and P2 are true.

(2) Assume that br is odd for all r 6 k
) br is odd for r = 1, 2, 3, ...., k .... (¤ )

Now bk+1 = 2bk + bk¡1

) bk+1 = 2(odd) + odd fusing ¤ g
= even + odd

= odd

Thus P1 is true, and the assumed result for

r = 1, 2, 3, ...., k ) the same result for r = k + 1.

) Pn is true for all n 2 Z +.

3 f1 = 1, f2 = 1, f3 = 2, f4 = 3, f5 = 5, f6 = 8, f7 = 13,

f8 = 21, f9 = 34, f10 = 55, f11 = 89

If Sn =
nP

k=1

fk then S1 = f1 = 1

S2 = f1 + f2 = 2

S3 = f1 + f2 + f3 = 4

S4 = f1 + f2 + f3 + f4 = 7

S5 = 12

S6 = 20

S7 = 33

We notice that S1 = f3 ¡ 1

S2 = f4 ¡ 1

S3 = f5 ¡ 1

S4 =
.
.
.

f6 ¡ 1

etc

So, we postulate that Sn = fn+2 ¡ 1 for all n 2 Z +.

Proof:

(By the Principle of Mathematical Induction (strong form))

Pn is that “if S1 = 1 and Sn+1 = Sn + fn+1

for all n 2 Z +, then Sn = fn+2 ¡ 1”.

(1) If n = 1, S1 = 1 and f3 ¡ 1 = 2¡ 1 = 1 X

) P1 is true.

(2) Assume that Sr = fr+2 ¡ 1 is true for all r 6 t
) Sr = fr+2 ¡ 1 for r = 1, 2, 3, ...., t .... ( ¤ )

Now St+1 = St + ft+1

= ft+2 ¡ 1 + ft+1 fusing ¤ g
= (ft+2 + ft+1)¡ 1
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WORKED SOLUTIONS 163

= ft+3 ¡ 1

= f[t+1]+2 ¡ 1

Thus P1 is true, and the assumed result for

r = 1, 2, 3, ...., t ) the same result for r = t+ 1.

Thus Pn is true for all n 2 Z+.

4 a Proof:
(By the Principle of Mathematical Induction (strong form))

Pn is that “if f1 = f2 = 1 and fn = fn¡1 + fn¡2

for all n > 3, n 2 Z +,

then
¡
3
2

¢n¡2
< fn < 2n¡2 ”.

(1) If n = 3,
¡
3
2

¢1
< f3 6 21

) 3
2
< 2 6 2 which is true

) P3 is true.

(2) Consider first proving fn >
¡
3
2

¢n¡2
, n > 3

Assume that fr >
¡
3
2

¢r¡2
for all 3 6 r 6 k

) fr >
¡
3
2

¢r¡2
for r = 3, 4, 5, ...., k .... (1)

Now fk+1 = fk + fk¡1

>
¡
3
2

¢k¡2
+
¡
3
2

¢k¡3 fusing (1)g
=
¡
3
2

¢k¡1 £ 2
3
+ 4

9

¤
=
¡
3
2

¢k¡1 ¡ 10
9

¢
>
¡
3
2

¢k¡1

Secondly we prove that fn 6 2n¡2, n > 3

Assume that fr 6 2r¡2 for all 3 6 r 6 k

) fr 6 2r¡2 for r = 3, 4, 5, ...., k .... (2)

Now fk+1 = fk + fk¡1

6 2k¡2 + 2k¡3 fusing (2)g
= 2k¡1

£
1
2
+ 1

4

¤
= 2k¡1

¡
3
4

¢
6 2k¡1

Thus P3 is true, and the assumed result for

r = 3, 4, 5, ...., k ) the result for r = k + 1.

) Pn is true for all n > 3, n 2 Z +.

b Proof:
(By the Principle of Mathematical Induction (strong form))

Pn is that “if f1 = f2 = 1 and fn+2 = fn+1 + fn

for all n 2 Z +, then

µ
1 +

p
5

2

¶n¡2

< fn”.

(1) If n = 1,

µ
1 +

p
5

2

¶¡1

< f1 is true

as LHS =
2

1 +
p
5
< 1 = RHS

(2) Assume that

µ
1 +

p
5

2

¶r¡2

< fr is true for all r 6 k

)

µ
1 +

p
5

2

¶r¡2

< fr for r = 1, 2, 3, ...., k .... ( ¤ )

Now fk+1

= fk + fk¡1

>

µ
1 +

p
5

2

¶k¡2

+

µ
1 +

p
5

2

¶k¡3

fusing ¤ g

=

µ
1 +

p
5

2

¶k¡1 h
2

1 +
p
5
+

4

(1 +
p
5)2

i
=

µ
1 +

p
5

2

¶k¡1

[1]

=

µ
1 +

p
5

2

¶k¡1

Thus

µ
1 +

p
5

2

¶[k+1]¡2

< fk+1.

Thus P1 is true, and the assumed result for

r = 1, 2, 3, ...., k ) the same result for r = k + 1.

) Pn is true for all n 2 Z +.

5 As fn+2 = fn+1 + fn, then

fn = fn+2 ¡ fn+1

Thus,
nP

k=1

fn

= f1 + f2 + f3 + ::::+ fn

= (f3 ¡ f2) + (f4 ¡ f3) + (f5 ¡ f4) + ::::

+ (fn+1 ¡ fn) + (fn+2 ¡ fn+1)

= fn+2 ¡ f2

= fn+2 ¡ 1

6 Consider
nP

k=1

f2k¡1 = Sn, say

S1 = f1 = 1 = f2

S2 = f1 + f3 = 1 + 2 = 3 = f4

S3 = 3 + f5 = 3 + 5 = 8 = f6

S4 = 8 + f7 = 8 + 13 = 21 = f8

S5 = 21 + f9 = 21 + 34 = 55 = f10

As it appears that Sn = f2n for all n > 1, we postulate that

Sn =
nP

k=1

f2k¡1 = f2n, n 2 Z+.

Proof: (By the Principle of Mathematical Induction)

Pn is that “Sn = f2n” for all n 2 Z +.

(1) If n = 1, LHS = f1 = 1

RHS = f2 = 1

) P1 is true.

(2) If Pt is true, then St = f2t, t 2 Z + .... (¤ )

Now St+1 = St + f2t+1

= f2t + f2t+1 fusing ¤ g
= f2t+2

= f2(t+1)

Thus P1 is true, and Pt+1 is true whenever Pt is true.

) Pn is true for all n 2 Z+.

7 Let
nP

k=1

f 2
k

= Sn, say

S1 = f 2
1 = 1£ 1 = 1

S2 = S1 + f 2
2 = 1 + 12 = 2

S3 = S2 + f 2
3 = 2 + 22 = 6

S4 = S3 + f 2
4 = 6 + 32 = 15

S5 = S4 + f 2
5 = 15 + 52 = 40
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164 WORKED SOLUTIONS

Thus, S1 = 1£ 1 = f1f2

S2 = 1£ 2 = f2f3

S3 = 2£ 3 = f3f4

S4 = 3£ 5 = f4f5

S5 = 5£ 8 = f5f6

As it appears that Sn = fnfn+1 for all n > 1 we postulate

that Sn =
nP

k=1

f 2
k

= fnfn+1, n 2 Z+.

Proof: (By the Principle of Mathematical Induction)

Pn is that “Sn = fnfn+1” for all n 2 Z +.

(1) If n = 1, LHS = 12 = 1

RHS = 1£ 1 = 1

) P1 is true.

(2) If Pt is true, then St = ftft+1 .... ( ¤ )

Now St+1 = St + f 2
t+1

= ftft+1 + f 2
t+1 fusing ¤ g

= ft+1[ft + ft+1]

= ft+1ft+2

Thus P1 is true, and Pt+1 is true whenever Pt is true.

) Pn is true for all n 2 Z+.

8 Proof: (By the Principle of Mathematical Induction)

Pn is that “fn+1fn¡1 ¡ f 2
n = (¡1)n ”, n > 2, n 2 Z +.

(1) If n = 2, LHS = f3f1 ¡ f 2
2

= 2£ 1¡ 12

= 1

= (¡1)2

= RHS

) P1 is true.

(2) If Pk is true, then fk+1fk¡1 ¡ f 2
k

= (¡1)k .... ( ¤ )

Now fk+2fk ¡ f 2
k+1

= (fk+1 + fk)fk ¡ f 2
k+1

= fk+1fk + f 2
k ¡ f 2

k+1

= fk+1fk +
£
fk+1fk¡1 ¡ (¡1)k

¤
¡ f 2

k+1

fusing ¤ g
= fk+1(fk + fk¡1) + (¡1)k+1 ¡ f 2

k+1

= f 2
k+1 + (¡1)k+1 ¡ f 2

k+1

= (¡1)k+1

Thus P1 is true, and Pk+1 is true whenever Pk is true.

) Pn is true for n > 2, n 2 Z +.

9 Let Sn =
nP

k=1

f2k ) S1 = f2 = 1

S2 = S1 + f4 = 1 + 3 = 4

S3 = S2 + f6 = 4 + 8 = 12

S4 = S3 + f8 = 12 + 21 = 33

S5 = S4 + f10 = 33 + 55 = 88

S1 + 1 = 2 = f3

S2 + 1 = 5 = f5

S3 + 1 = 13 = f7

S4 + 1 = 34 = f9

S5 + 1 = 89 = f11

) we postulate that Sn =
nP

k=1

f2k = f2n+1 ¡ 1

Proof: (By the Principle of Mathematical Induction)

Pn is that “Sn = f2n+1 ¡ 1” for all n 2 Z +.

(1) If n = 1, S1 = 1 and f2n+1 ¡ 1 = f3 ¡ 1

= 2¡ 1

= 1

) P1 is true.

(2) If Pt is true, then St = f2t+1 ¡ 1 .... (¤ )

) St+1 = St + f2t+2

= f2t+1 ¡ 1 + f2t+2 fusing ¤ g
= (f2t+1 + f2t+2)¡ 1

= f2t+3 ¡ 1

= f2(t+1)+1 ¡ 1

Thus P1 is true, and Pt+1 is true whenever Pt is true.

) Pn is true for all n 2 Z +.

10 Let Sn =
2n¡1P
k=1

fkfk+1

) S1 = f1f2 = 1£ 1 = 1

S2 = f1f2 + f2f3 + f3f4 = 1 + 2 + 6 = 9

S3 = f1f2 + f2f3 + f3f4 + f4f5 + f5f6

= 9 + 15 + 40

= 64

As S1 = 12 = f 2
2

S2 = 32 = f 2
4

S3 = 82 = f 2
6 , we postulate that

Sn =
2n¡1P
k=1

fkfk+1 = f 2
2n

Proof: (By the Principle of Mathematical Induction)

Pn is that “Sn = (f2n)2” for all n 2 Z+.

(1) If n = 1, S1 = f1 £ f2 = 1£ 1 = 1 and f 2
2 = 12 = 1

) P1 is true.

(2) If Pt is true then St = (f2t)2 .... ( ¤ )

Now St+1 = St + f2tf2t+1 + f2t+1f2t+2

= (f2t)
2 + f2tf2t+1 + f2t+1(f2t+1 + f2t)

fusing ¤ g
= (f2t)

2 + 2(f2tf2t+1) + (f2t+1)
2

= (f2t + f2t+1)
2

= (f2t+2)
2

= (f2(t+1))
2

Thus P1 is true, and Pt+1 is true whenever Pt is true.

) Pn is true for all n 2 Z +.

11 (fn)
2 ¡ (fn¡1)

2 + (¡1)n

= (fn + fn¡1)(fn ¡ fn¡1) + (¡1)n

= fn+1(fn ¡ fn¡1) + (¡1)n

= fnfn+1 ¡ fn+1fn¡1 + (¡1)n

= fnfn+1 ¡
£
(fn)

2 + (¡1)n
¤
+ (¡1)n ffrom 8g

= fnfn+1 ¡ f 2
n ¡ (¡1)n + (¡1)n

= fn(fn+1 ¡ fn)

= fnfn¡1 ffn¡1 + fn = fn+1g
Suppose fn¡1 and fn have some common factor k > 1.

) k j fn¡1 and k j fn
) k2 j fn £ fn¡1 .... (1)
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WORKED SOLUTIONS 165

Also, k2 j (fn)2 ¡ (fn¡1)
2

) k2 j= (fn)2 ¡ (fn¡1)
2 + (¡1)n for k > 1 .... (2)

But (1) and (2) are contradictions since

fn £ fn¡1 = (fn)2 ¡ (fn¡1)2 + (¡1)n

) fn¡1 and fn have no common factor besides 1.

12 a Proof:
(By the Principle of Mathematical Induction (strong form))

Pn is that

“if f1 = f2 = 1 and fn+2 = fn+1+fn for all n 2 Z +,

then fn = an =
1p
5

µ
1 +

p
5

2

¶n

¡ 1p
5

µ
1 ¡p

5

2

¶n

”.

(1) If n = 1,

a1 =
1p
5

µ
1 +

p
5

2

¶
¡ 1p

5

µ
1 ¡ p

5

2

¶
=

1 +
p
5 ¡ 1 +

p
5

2
p
5

=
2
p
5

2
p
5
= 1 and f1 = 1 ) P1 is true.

If n = 2,

a2 =
1p
5

µ
1 +

p
5

2

¶2

¡ 1p
5

µ
1 ¡ p

5

2

¶2

=
1

4
p
5

£
(1 +

p
5) + (1¡

p
5)
¤ £
(1 +

p
5)¡ (1¡

p
5)
¤

=
1

4
p
5
(2)(2

p
5) = 1 and f2 = 1 ) P2 is true.

(2) Assume that

fr = ar =
1p
5

µ
1 +

p
5

2

¶r

¡ 1p
5

µ
1 ¡ p

5

2

¶r

is true for all r 6 k

) fr =
1p
5

µ
1 +

p
5

2

¶r

¡ 1p
5

µ
1 ¡ p

5

2

¶r

for r = 1, 2, 3, ...., k .... ( ¤ )
Now

fk+1

= fk + fk¡1

=
1p
5

µ
1 +

p
5

2

¶k

¡ 1p
5

µ
1 ¡ p

5

2

¶k

+
1p
5

µ
1 +

p
5

2

¶k¡1

¡ 1p
5

µ
1 ¡ p

5

2

¶k¡1

fusing ¤ g

=
1p
5

µ
1 +

p
5

2

¶k+1 ·
2

1 +
p
5
+

³
2

1 +
p
5

2́
¸

¡ 1p
5

µ
1 ¡ p

5

2

¶k+1 ·
2

1 ¡p
5
+

³
2

1 ¡ p
5

2́
¸

where

2

1 +
p
5
+

³
2

1 +
p
5

2́

and
2

1 ¡ p
5
+

³
2

1 ¡ p
5

2́

=
2(1 +

p
5)

(1 +
p
5)2

+
4

(1 +
p
5)2

=
2(1¡ p

5)

(1 ¡p
5)2

+
4

(1¡ p
5)2

=
6 + 2

p
5

(1 +
p
5)2

=
6 ¡ 2

p
5

(1 ¡p
5)2

=
6 + 2

p
5

6 + 2
p
5
= 1 = 1 also

) fk+1 =
1p
5

µ
1 +

p
5

2

¶k+1

¡ 1p
5

µ
1 ¡ p

5

2

¶k+1

Thus P1 (and P2) are true, and the assumed result for

r = 1, 2, 3, ...., k ) the same result for r = k + 1.

Thus Pn is true for all n 2 Z +.

b The strong form.

13 Proof: (By the Principle of Mathematical Induction)

Pn is that “f4n is a multiple of 3” for all n 2 Z +.

(1) If n = 1, f4n = f4 = 3 which is a multiple of 3.

) P1 is true.

(2) If Pk is true, then f4k = 3A, A 2 Z .... ( ¤ )

Now f4(k+1) = f4k+4

= f4k+3 + f4k+2

= f4k+2 + f4k+1 + f4k+2

= 2f4k+2 + f4k+1

= 2 [f4k+1 + f4k] + f4k+1

= 3f4k+1 + 2f4k

= 3f4k+1 + 6A fusing ¤ g
= 3 [f4k+1 + 2A]

where f4k+1 + 2A 2 Z

) f4(k+1) is a multiple of 3.

Thus P1 is true, and Pk+1 is true whenever Pk is true.

) Pn is true for all n 2 Z+.

14 a f0 = 0, f5 = 5, and f10 = 55

b Proof: (By the Principle of Mathematical Induction)

Pt is that “f5t is a multiple of 5” for all t > 0.

(1) f0 = 0 is a multiple of 5.

) P0 is true.

(2) If Pk is true, then f5k = 5A, A 2 Z .... (¤ )

Now f5(k+1) = f5k+5

= f5k+4 + f5k+3

= f5k+3 + f5k+2 + f5k+3

= 2f5k+3 + f5k+2

= 2 [f5k+2 + f5k+1] + f5k+2

= 3f5k+2 + 2f5k+1

= 3 [f5k+1 + f5k] + 2f5k+1

= 5f5k+1 + 3f5k

= 5f5k+1 + 3(5A) ffrom ¤ g
= 5 [f5k+1 + 3A]

where f5k+1 + 3A 2 Z

) f5(k+1) is a multiple of 5.

Thus P0 is true, and Pk+1 is true whenever Pk is true.

) Pt is true for all t > 0.

EXERCISE 1B.1

1 a i an = an¡1 + 2 for n > 1 and a0 = 12.

a0 = 12

a1 = a0 + 2 = 14

a2 = a1 + 2 = 16

a3 = a2 + 2 = 18

a4 = a3 + 2 = 20

Conjecture: an = 2n+ 12, n 2 N .
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166 WORKED SOLUTIONS

ii For n = 0, a0 = 2(0) + 12 = 12 X

If ak = 2k + 12 then ak+1 = ak + 2

= 2k + 12 + 2

= 2[k + 1] + 12
which is of the required form.

) by the principle of (weak) induction, an = 2n+12

for all n 2 N .

b i an = 3an¡1 for n > 1 and a0 = 10.

a0 = 10 = 10£ 30

a1 = 3a0 = 30 = 10£ 31

a2 = 3a1 = 90 = 10£ 32

a3 = 3a2 = 270 = 10£ 33

a4 = 3a3 = 810 = 10£ 34

Conjecture: an = 10£ 3n, n 2 N .

ii For n = 0, a0 = 10£ 30 = 10 X

If ak = 10£ 3k then ak+1 = 3ak

= 3£ 10£ 3k

= 10£ 3k+1

which is of the required form.

) by the principle of (weak) induction, an = 10£3n

for all n 2 N .

c i an+1 = 3an for n > 1 and a1 = 10.

a1 = 10 = 10£ 30

a2 = 3a1 = 30 = 10£ 31

a3 = 3a2 = 90 = 10£ 32

a4 = 3a3 = 270 = 10£ 33

a5 = 3a4 = 810 = 10£ 34

Conjecture: an = 10£ 3n¡1, n 2 Z+.

ii For n = 1, a1 = 10£ 1 = 10 X

If ak = 10£ 3k¡1 then ak+1 = 3ak

= 3£ 10£ 3k¡1

= 10£ 3k

= 10£ 3[k+1]¡1

which is of the required form.

) by the principle of (weak) induction,

an = 10£ 3n¡1 for all n 2 Z+.

d i an = 2an¡1 + 10 for n > 1 and a0 = 1.

a1 = 2a0 + 10 = 2 + 10 = 12

a2 = 2a1 + 10

= 2(2 + 10) + 10

= 22 + 2£ 10 + 10

= 34

a3 = 2a2 + 10

= 2(22 + 2£ 10 + 10) + 10

= 23 + 22 £ 10 + 2£ 10 + 10

= 78

a4 = 2a3 + 10

= 2(23 + 22 £ 10 + 2£ 10 + 10) + 10

= 24 + 23 £ 10 + 22 £ 10 + 2£ 10 + 10

= 166

From the under-scored lines we conjecture that

an = 2n + [2n¡1 + 2n¡2 + 2n¡3 + ::::+ 2 + 1]10

) an = 2n + 10

³
2n ¡ 1

2 ¡ 1

´
fsum of GSg

) an = 2n + 10(2n ¡ 1)

) an = 11£ 2n ¡ 10, n 2 N

ii For n = 0, a0 = 11£ 20 ¡ 10 = 1 X

If ak = 11£ 2k ¡ 10

then ak+1 = 2ak + 10

= 2[11£ 2k ¡ 10] + 10

= 11£ 2k+1 ¡ 20 + 10

= 11£ 2[k+1] ¡ 10

which is of the required form.

) by the principle of (weak) induction,

an = 11£ 2n ¡ 10 for all n 2 N .

e i an = an¡1 + k for n > 1 and a0 = 0.

a0 = 0 = 0k

a1 = a0 + k = 0 + k = k

a2 = a1 + k = k + k = 2k

a3 = a2 + k = 2k + k = 3k

a4 = a3 + k = 3k + k = 4k

Conjecture: an = nk, n 2 N .

ii For n = 0, a0 = 0(k) = 0 X

If at = tk

then at+1 = at + k

= tk + k

= [t+ 1]k

which is of the required form.

) by the principle of (weak) induction, an = nk

for all n 2 N .

f i an = kan¡1 for n 2 Z + and a0 = 1.

a0 = 1 = k0

a1 = ka0 = k £ 1 = k

a2 = ka1 = k £ k = k2

a3 = ka2 = k £ k2 = k3

a4 = ka3 = k £ k3 = k4

Conjecture: an = kn, n 2 N .

ii For n = 0, a0 = k0 = 1 X

If at = kt

then at+1 = kat

= k £ kt

= kt+1

which is of the required form.

) by the principle of (weak) induction, an = kn

for all n 2 N .

g i an = nan¡1, n 2 Z +, n > 2 and a1 = 1.

a1 = 1 = 1!

a2 = 2a1 = 2£ 1 = 2 = 2!

a3 = 3a2 = 3£ 2 = 6 = 3!

a4 = 4a3 = 4£ 6 = 24 = 4!

a5 = 5a4 = 5£ 24 = 120 = 5!

Conjecture: an = n! for all n 2 Z +.

ii For n = 1, a1 = 1! = 1 X

If ak = k!

then ak+1 = (k + 1)ak

= (k + 1)k!

= (k + 1)!

which is of the required form.

) by the principle of (weak) induction, an = n!

for all n 2 Z+.
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WORKED SOLUTIONS 167

h i xn+1 = xn + (2n+ 3) for n 2 Z + and x0 = 1.

x0 = 1 = 12

x1 = x0 + 3 = 1 + 3 = 4 = 22

x2 = x1 + 5 = 4 + 5 = 9 = 32

x3 = x2 + 7 = 9 + 7 = 16 = 42

Conjecture: xn = (n+ 1)2 for all n 2 N .

ii For n = 0, x0 = 12 = 1 X

If xk = (k + 1)2

then xk+1 = xk + (2k + 3)

= (k + 1)2 + 2k + 3

= k2 + 2k + 1 + 2k + 3

= k2 + 4k + 4

= (k + 2)2

= ([k + 1] + 1)2

which is of the required form.

) by the principle of (weak) induction, xn = (n+1)2

for all n 2 N .

2 a 5, 7, 9, 11, ....
Recurrence relationship

an = an¡1 + 2 for n 2 Z+ and a0 = 5.

Closed form

an = 2n+ 5, n 2 N .

b 5, 6, 9, 14, 21, 30, ....

a0 = 5

a1 = a0 + 1 = 6

a2 = a1 + 3 = 9

a3 = a2 + 5 = 14

a4 = a3 + 7 = 21

a5 = a4 + 9 = 30

Recurrence relationship

an = an¡1 + (2n¡ 1) for n 2 Z+ and a0 = 5.

a0 = 5

a1 = 5 + 1

a2 = 5 + 4

a3 = 5 + 9

a4 = 5 + 16

a5 = 5 + 25

Closed form

an = 5 + n2, n 2 N .

c 5, 10, 20, 40, 80, ....

a0 = 5

a1 = 2£ 5 = 2a0

a2 = 2£ a1

a3 = 2£ a2

a4 = 2£ a3
Recurrence relationship

an = 2an¡1 for n 2 Z + and a0 = 5.

Also a0 = 5

a1 = 2£ 5

a2 = 22 £ 5

a3 = 23 £ 5

a4 = 24 £ 5

Closed form

an = 5£ 2n, n 2 N .

d 2, 8, 24, 64, 160, ....

a0 = 2 = 2£ 1

a1 = 8 = 22 £ 2

a2 = 24 = 23 £ 3

a3 = 64 = 24 £ 4

a4 = 160 = 25 £ 5

Recurrence relationship
a1

a0
= 2£ 2

1

a2

a1
= 2£ 3

2

a3

a2
= 2£ 4

3

a4

a3
= 2£ 5

4
suggests

an

an¡1
= 2£ n+ 1

n

) an = 2

³
n + 1

n

´
an¡1 for n > 1, and a0 = 2.

Closed form an = 2n+1(n+ 1), n 2 N .

e This is the Fibonacci sequence with

Recurrence relationship

an+2 = an+1 + an, a0 = a1 = 1, n 2 N .

Closed form (previously found)

an =
1p
5

µ
1 +

p
5

2

¶n

¡ 1p
5

µ
1 ¡ p

5

2

¶n

, n 2 N .

3 a an = an¡1 + 2n¡ 1, n 2 Z +, a0 = 0.

i a1 = a0 + 1 = 0 + 1 = 1 = 12

a2 = a1 + 3 = 1 + 3 = 4 = 22

a3 = a2 + 5 = 4 + 5 = 9 = 32

a4 = a3 + 7 = 9 + 7 = 16 = 42

Conjecture: an = n2 for all n 2 N

ii For n = 0, a0 = 02 = 0 X

If ak = k2 then ak+1 = ak + 2(k + 1)¡ 1

= k2 + 2k + 2¡ 1

= k2 + 2k + 1

= (k + 1)2

which is of the required form.

) by the principle of (weak) induction, an = n2

for all n 2 N .

iii a100 = 1002 = 100 000

b an = an¡1 + 2n+ 1, n 2 Z +, a0 = 1.

i a1 = a0 + 3 = 1 + 3 = 4 = 22

a2 = a1 + 5 = 4 + 5 = 9 = 32

a3 = a2 + 7 = 9 + 7 = 16 = 42

a4 = a3 + 9 = 16 + 9 = 25 = 52

Conjecture: an = (n+ 1)2, n 2 N

ii For n = 0, a0 = 12 = 1 X

If ak = (k + 1)2

then ak+1 = ak + 2(k + 1) + 1

= (k + 1)2 + 2k + 3

= k2 + 2k + 1 + 2k + 3

= k2 + 4k + 4

= (k + 2)2 = ([k + 1] + 1)2

which is of the required form.

) by the principle of (weak) induction, an = (n+1)2

for all n 2 N .
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168 WORKED SOLUTIONS

iii a100 = (101)2 = 10 201

c an = an¡1 + n for n 2 Z+ and a0 = 0.

i a0 = 0 =
0 £ 1

2

a1 = a0 + 1 = 0 + 1 = 1 =
1 £ 2

2

a2 = a1 + 2 = 1 + 2 = 3 =
2 £ 3

2

a3 = a2 + 3 = 3 + 3 = 6 =
3 £ 4

2

a4 = a3 + 4 = 6 + 4 = 10 =
4 £ 5

2

Conjecture: an =
n(n + 1)

2
for n 2 N

ii For n = 0, a0 =
0 £ 1

2
= 0 X

If ak =
k(k + 1)

2

then ak+1 = ak + (k + 1)

=
k(k + 1)

2
+

=
k + 1

2
[k + 2]

=
(k + 1)([k + 1] + 1)

2
which is of the required form.

) by the principle of (weak) induction,

an =
n(n + 1)

2
for all n 2 N .

iii a100 =
100£ 101

2
= 5050

d an = an¡1 + n+ 1 for n 2 Z + and a0 = 1.

i a0 = 1 =
1 £ 2

2

a1 = a0 + 2 = 1 + 2 = 3 =
2 £ 3

2

a2 = a1 + 3 = 3 + 3 = 6 =
3 £ 4

2

a3 = a2 + 4 = 6 + 4 = 10 =
4 £ 5

2

a4 = a3 + 5 = 10 + 5 = 15 =
5 £ 6

2

Conjecture: an =
(n + 1)(n+ 2)

2
, n 2 N

ii For n = 0, a0 =
1 £ 2

2
= 1 X

If ak =
(k + 1)(k + 2)

2

then ak+1 = ak + k + 2

=
(k + 1)(k + 2)

2
+

=
k + 2

2
[k + 1 + 2]

=
(k + 2)(k + 3)

2

=
([k + 1] + 1)([k + 1] + 2)

2
which is of the required form.

) by the principle of (weak) induction,

an =
(n + 1)(n + 2)

2
for all n 2 N .

iii a100 =
101£ 102

2
= 5151

e an = an¡1 + n3 for n 2 Z+, a0 = 0.

i a0 = 0 = 02

a1 = a0 + 13 = 0 + 1 = 1 = 12

a2 = a1 + 23 = 1 + 8 = 9 = 32

a3 = a2 + 33 = 9 + 27 = 36 = 62

a4 = a3 + 43 = 36 + 64 = 100 = 102

Conjecture: Using c, an =

h
n(n + 1)

2

i2
, n 2 N

ii For n = 0, a0 =

h
0 £ 1

2

i2
= 0 X

If ak =

h
k(k + 1)

2

i2
then ak+1 = ak + (k + 1)3

=
k2(k + 1)2

4
+ (k + 1)3

³
4

4

´
=

(k + 1)2[k2 + 4k + 4]

4

=
(k + 1)2(k + 2)2

4

=

h
(k + 1)([k + 1] + 1)

2

i2
which is of the required form.

) by the principle of (weak) induction,

an =

h
n(n + 1)

2

i2
for all n 2 N .

iii a100 =

h
100£ 101

2

i2
= 25 502 500

f an = (n+ 1)an¡1 for n 2 Z + and a0 = 1.

i a0 = 1 = 1!

a1 = 2a0 = 2£ 1 = 2!

a2 = 3a1 = 3£ 2£ 1 = 3!

a3 = 4a2 = 4£ 3£ 2£ 1 = 4!

Conjecture: an = (n+ 1)!, n 2 N

ii For n = 0, a0 = 1! = 1 X

If ak = (k + 1)!

then ak+1 = (k + 2)ak

= (k + 2)(k + 1)!

= (k + 2)!

= ([k + 1] + 1)!

which is of the required form.

) by the principle of (weak) induction, an = (n+1)!

for all n 2 N .

iii a100 = 101!

4 a0 = c and an = ran¡1, n 2 Z +

a a0 = c

a1 = ra0 = rc

a2 = ra1 = r(rc) = r2c

a3 = ra2 = r(r2c) = r3c

b Conjecture: an = crn, n 2 N .

5 a0 = c and an = an¡1 + b, n 2 Z +

a a0 = c

a1 = a0 + b = c+ b

(k + 1)

³
2

2

´

(k + 2)

³
2

2

´
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WORKED SOLUTIONS 169

a2 = a1 + b = c+ b+ b = c+ 2b

a3 = a2 + b = c+ 2b+ b = c+ 3b

b Conjecture: an = c+ nb, n 2 N .

6 a0 = c, an = ran¡1 + b, n 2 Z+

a a0 = c

a1 = ra0 + b = rc+ b

a2 = ra1 + b = r(rc+ b) + b

= r2c+ rb+ b

a3 = ra2 + b = r(r2c+ rb+ b) + b

= r3c+ r2b+ rb+ b

a4 = ra3 + b = r(r3c+ r2b+ rb+ b) + b

= r4c+ r3b+ r2b+ rb+ b

b Conjecture:

an = rnc+ rn¡1b+ rn¡2b+ ::::+ rb+ b

) an = rnc+ b(rn¡1 + rn¡2 + ::::+ r + 1)

That is, an = rnc+ b

³
rn ¡ 1

r ¡ 1

´
, n 2 N

fusing sum of a GSg
7 an = an¡1 + an¡2 ¡ an¡3, n > 3, n 2 Z

a No, as initial values of a0, a1, and a2 are needed.

b If an = c, n 2 N then for n > 3,

an¡3 = an¡2 = an¡1 = c.

) an¡1 + an¡2 ¡ an¡3

= c+ c¡ c

= c

= an
) an = c for n 2 N is a closed form solution.

c If an = cn+ d, n 2 N then for n > 3

an¡1 = c(n¡ 1) + d

an¡2 = c(n¡ 2) + d

an¡3 = c(n¡ 3) + d

) an¡1 + an¡2 ¡ an¡3

= cn¡ c+ d+ cn¡ 2c+ d¡ cn+ 3c¡ d

= cn+ d

= an
) an = cn+ d for n 2 N is a closed form solution.

8 a0 = c, an = an¡1 + n2, n 2 Z+

a1 = a0 + 12 = c+ 12

a2 = a1 + 22 = c+ 12 + 22

a3 = a2 + 32 = c+ 12 + 22 + 32

a4 =
.
.
.

a3 + 42 = c+ 12 + 22 + 32 + 42

an = c+ 12 + 22 + 32 + ::::+ (n¡ 1)2 + n2

) an = c+
nP

i=1

i2

) an = c+
n(n + 1)(2n+ 1)

6
, n 2 N .

EXERCISE 1B.2

1 a homogeneous with constant coefficients

) an = rnc where c = 0, r = 100

) an = 100n £ 0

) an = 0, n 2 N

b homogeneous with constant coefficients

) an = rnc where c = 3, r = 100 = 102

) an = (102)n £ 3

) an = 3£ 102n, n 2 N

c homogeneous with constant coefficients

) an = rn¡1c where c = 500, r = 10

fexponent is n¡ 1 since the initial term is a1g
) an = 10n¡1 £ 500

) an = 5£ 10n+1, n 2 Z+

d inhomogeneous with constant coefficient of 1

) an = c+ nb where c = 3, b = ¡5

) an = 3 + n£¡5

) an = 3¡ 5n, n 2 N

e inhomogeneous with constant coefficient of 1

) an = c+ nb where c = 0, b = 1

) an = 0 + n£ 1

) an = n, n 2 N

f inhomogeneous with constant coefficient of 1

) an = c+ (n¡ 2)b where c = ¡17, b = ¡4

fcoefficient of b is n¡ 2 since the initial term is a2g
) an = ¡17 + (n¡ 2)(¡4)

) an = ¡9¡ 4n, n 2 Z +, n > 2

g inhomogeneous with constant coefficient r 6= 1

) an = rnc+ b

³
rn ¡ 1

r ¡ 1

´
where c = 1, r = 3, b = 5

) an = 3n £ 1 + 5

³
3n ¡ 1

3 ¡ 1

´
) an = 3n + 5

³
3n ¡ 1

2

´
) an = 3n + 5

2
3n ¡ 5

2

) an =
¡
7
2

¢
3n ¡ 5

2

or an =
7(3n) ¡ 5

2
, n 2 N

h inhomogeneous with constant coefficient r 6= 1

) an = rnc+ b

³
rn ¡ 1

r ¡ 1

´
where c = 3, r = ¡2, b = 6

) an = 3(¡2)n + 6

³
(¡2)n ¡ 1

¡2 ¡ 1

´
) an = 3(¡2)n ¡ 2[(¡2)n ¡ 1]

) an = 3(¡2)n ¡ 2(¡2)n + 2

) an = (¡2)n + 2, n 2 N

i inhomogeneous with constant coefficient r 6= 1

) an = rnc+ b

³
rn ¡ 1

r ¡ 1

´
where c = 0, r = 5, b = 3

) an = 5n(0) + 3

³
5n ¡ 1

4

´
) an = 3

4
(5n ¡ 1), n 2 N

2 a an = 3an¡1, n 2 Z +

b an = 3n £ a0

) an = a0(3
n), n 2 N
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170 WORKED SOLUTIONS

c i a6 = 20 000

) a0 £ 36 = 20 000

) a0 =
20 000

36
¼ 27:4

) a0 = 27 cells

ii a24 = 27£ 324

¼ 7:63£ 1012 cells

iii If an = 51000 000, then

27£ 3n = 51000 000

) 3n ¼ 1:888 89£ 106

) n ln 3 ¼ ln(1:888 89£ 106)

) n ¼ 14:451::::

1:0986::::
) n ¼ 13:15 hours

) n ¼ 13 hours 9:259 min

) n ¼ 13 hours 10 min

3 a0 = 1 fthe empty string is uniqueg
a1 = 2 f0, 1g
a2 = 4 f00, 01, 10, 11g
a3 = 8 f000, 100, 010, 001, 110, 101, 011, 111g
an = 2an¡1 for n 2 Z + and a0 = 1

) an = 2n, n 2 N

4 a a0 = 500

a1 = 500£ 1:1 = 550

a2 = 500£ 1:12 = 605

a3 = 500£ 1:13 = 665:50

b an = an¡1 £ 1:1, a0 = 500

c an = 500£ (1:1)n, n 2 N

d a10 = 500£ (1:1)10

¼ 1296:87

) the investment is worth ¼ $1296:87 .

e When an = 1000
(1:1)n = 2

) n ln(1:1) = ln 2

) n =
ln 2

ln 1:1

) n ¼ 7:2725

) the initial value will be doubled in 7 years and 100 days.

5 a an = ran¡1, n > 1

) an = rna0, n 2 N

b i r = 100%+ 12% = 112% = 1:12

ii r = 100%+ 12%
4

= 103% = 1:03

iii r = 100%+ 12%
12

= 101% = 1:01

c i a3 = (1:12)3 £ 10 500 ¼ 14 751:74

) the investment is worth ¼ $14 751:74 .

ii 3 years corresponds to 3 £ 4 = 12 compounding

periods.

a12 = (1:03)12 £ 10 500 ¼ 14 970:49

) the investment is worth ¼ $14 970:49 .

iii 3 years corresponds to 3 £ 12 = 36 compounding

periods.

a36 = (1:01)36 £ 10 500 ¼ 15 023:07

) the investment is worth ¼ $15 023:07 .

6 a an = 85% of an¡1, a0 = initial mass

) an = 0:85an¡1, a0 = initial mass

) an = (0:85)n £ a0, n 2 N

b But when n = 7, a7 = 80

) 80 = (0:85)7 £ a0

) a0 =
80

(0:85)7

) a0 ¼ 249:55

) an initial mass of ¼ 250 g is necessary.

7 a i a0 = 1000

ii a1 = 1000£ 1:048 + 100

= 1148

iii a2 = a1 £ 1:048 + 100

¼ 1303:10

iv a3 = a2 £ 1:048 + 100

¼ 1465:65

b an = an¡1 £ 1:048 + 100 for n 2 Z+, a0 = 1000

which has c = 1000, r = 1:048, b = 100

) an = (1:048)n £ 1000 + 100

³
1:048n ¡ 1

1:048¡ 1

´
, n 2 N

c If the investment doubles, an = 2000.

If (1:048)n1000 + 100

³
1:048n ¡ 1

1:048¡ 1

´
= 2000

then n ¼ 5:9914

fusing technologyg
) 6 years are needed to reach $2000.

8 a a0 = 800

a1 = 800£ 2

a2 = a1 £ 2 = 800£ 22

an = 2an¡1 for n 2 Z+ and a0 = 800

) an = 2n £ 800, n 2 N .

b In one day n = 8

and a8 = 28 £ 800

= 204 800

) 204 800 bacteria are present after 1 day.

c We need to solve an = 1000 000
2n £ 800 = 1 000 000

) 2n = 1250

) n =
ln 1250

ln 2

) 3n =
3 ln 1250

ln 2
) 3n = 30:863::::

) 31 hours are needed.

9 a a0 = 2000¡ 1600 = 400

a1 = a0 + 2000£ 1:01¡ 1600

a2 =
.
.
.

a1 + 2000£ 1:012 ¡ 1600

an = an¡1 + 2000£ 1:01n ¡ 1600, n 2 Z +

Now an ¡ an¡1 = 2000(1:01n)¡ 1600

an¡1 ¡ an¡2 = 2000(1:01n¡1)¡ 1600

an¡2 ¡ an¡3 =
.
.
.

2000(1:01n¡2)¡ 1600

a2 ¡ a1 = 2000(1:012)¡ 1600

a1 ¡ a0 = 2000(1:01)¡ 1600
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Adding vertically

an ¡ a0 = 2000£ 1:01[1 + 1:01 + 1:012 + ::::+ 1:01n¡1]

¡ n£ 1600

) an ¡ 400 = 2020

³
1:01n ¡ 1

1:01¡ 1

´
¡ 1600n

) an = 202000(1:01n ¡ 1)¡ 1600n+ 400, n 2 N .

b i a12 = 202 000(1:0112 ¡ 1)¡ 1600£ 12 + 400

¼ 6819

) the amount of steel held in stock after 12 months

is ¼ 6819 tonnes.

ii a24 = 202 000(1:0124 ¡ 1)¡ 1600£ 24 + 400

¼ 16 486

) the amount of steel held in stock after 2 years

is ¼ 16 486 tonnes.

c If 202 000(1:01n ¡ 1)¡ 1600n+ 400 = 30 000

then n ¼ 36:14

fusing technologyg
) it will take about 37 months to reach 30 000 tonnes.

10 a a0 = 5000

a1 = 5000£ 1:0075 + 40

½
r = 1 + 0:09

12

= 1:0075

¾
¼ 5077:50

a2 = a1 £ 1:0075 + 40

¼ 5155:58

a3 = a2 £ 1:0075 + 40

¼ 5234:25

b an = an¡1 £ 1:0075+ 40, for n 2 Z + and a0 = 5000

which has c = 5000, r = 1:0075, b = 40

) an = 5000(1:0075)n + 40

³
1:0075n ¡ 1

1:0075 ¡ 1

´
, n 2 N

c After 4 years, n = 4£ 12 = 48 months

and a48 = 5000(1:0075)48 + 40

µ
1:007548 ¡ 1

1:0075¡ 1

¶
) a48 ¼ 9457:86

) after 4 years the investment is worth ¼ $9457:86 .

d If 5000(1:0075)n + 40

³
1:0075n ¡ 1

1:0075¡ 1

´
= 15000

then n ¼ 90:59

fusing technologyg
) it will take ¼ 7 years and 7 months to reach $15 000.

11 a a0 = 3000

a1 = 3000£ 1:02¡ 200 ¼ 2860

½
r = 1 + 0:24

12

= 1:02

¾
a2 = a1 £ 1:02¡ 200 ¼ 2717:20

a3 = a2 £ 1:02¡ 200 ¼ 2571:54

b an = 1:02£ an¡1 ¡ 200, n 2 Z + and a0 = 3000

which has c = 3000, r = 1:02, b = ¡200

an = 3000(1:02)n ¡ 200

³
1:02n ¡ 1

0:02

´
) an = 3000(1:02)n ¡ 10 000(1:02n ¡ 1)

) an = 10000¡ 7000(1:02)n, n 2 N

c 10 000¡ 7000(1:02)n = 0

) (1:02)n = 10 000
7000

= 10
7

) n =
ln
¡
10
7

¢
ln(1:02)

) n ¼ 18:011

) the loan would take 18 months to repay with a very small

additional repayment at the end of the 19th month.

12 a a0 = a0

a1 = ra0 ¡ p

a2 = ra1 ¡ p

a3 = ra2 ¡ p and in general

an = ran¡1 ¡ p for n 2 Z +, a0 = a0

b c = a0, r = r, b = ¡p

) an = rna0 ¡ p

³
rn ¡ 1

r ¡ 1

´
, n 2 N .

13 a First interest added

= 13%
26

£ $20 000

= $
¡
0:13
26

£ 20 000
¢

= $100

So, to reduce the loan amount, a fortnightly repayment of

more than $100 must be made.

b i a0 = 20 000

a1 = 20 000£ 1:005¡ 200 fr = 1 + 0:13
26

= 1:005g
= 19 900

a2 = a1 £ 1:005¡ 200

= 19 799:50

a3 = a2 £ 1:005¡ 200

¼ 19 698:50

ii The recurrence relationship is an = an¡1£1:005¡200

for n 2 Z + and a0 = 20000.

iii c = 20000, r = 1:005, b = ¡200

) an = (1:005n)20 000¡ 200

³
1:005n ¡ 1

1:005¡ 1

´
) an = 20 000(1:005n)¡ 40 000(1:005n ¡ 1)

) an = 40 000¡ 20 000(1:005n), n 2 N

iv 2 years corresponds to

2£ 26 = 52 fortnightly repayments

a52 = 40000¡ 20 000(1:00552) ¼ 14 078:20

) the outstanding debt is about $14 078:20 .

v 40 000¡ 20 000(1:005n) = 0

) 1:005n =
40 000

20 000
= 2

) n =
ln 2

ln(1:005)

) n ¼ 138:975::::

) 139 fortnights are needed or 5 years, 18 weeks.

vi The total cost ¼ 139 payments of $200

¼ $27 800

) total interest paid ¼ $27 800¡ $20 000

¼ $7800

c i 4 years corresponds to

4£ 26 = 104 fortnightly repayments.

1:005104 £ 20 000¡ p

µ
1:005104 ¡ 1

1:005¡ 1

¶
= 0

) p

µ
1:005104 ¡ 1

0:005

¶
= 20000£ 1:005104

) p =
20 000 £ 1:005104 £ 0:005

1:005104 ¡ 1
) p ¼ 247:091

) to pay off the loan in 4 years, a fortnightly repayment

of $247:10 is needed.
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172 WORKED SOLUTIONS

ii Total cost ¼ $247:10£ 104

¼ $25 700

) total interest ¼ $25 700¡ $20 000

¼ $5700

EXERCISE 1B.3

1 a a0 = 0, a1 = 1, a2 = 2

an = 3an¡1 ¡ 3an¡2 + an¡3, n > 3

) a3 = 3a2 ¡ 3a1 + a0

= 3(2)¡ 3(1) + 0

= 3

a4 = 3a3 ¡ 3a2 + a1

= 3(3)¡ 3(2) + 1

= 4

a5 = 3a4 ¡ 3a3 + a2

= 3(4)¡ 3(3) + 2

= 5

a6 = 3a5 ¡ 3a4 + a3

= 3(5)¡ 3(4) + 3

= 6

a7 = 3a6 ¡ 3a5 + a4

= 3(6)¡ 3(5) + 4

= 7

b an = n for all n 2 N .

c a0 = 0, a1 = 1, a2 = 2 X

If ak = k for k > 0

then ak+1 = 3ak ¡ 3ak¡1 + ak¡2

= 3k ¡ 3(k ¡ 1) + (k ¡ 2)

= 3k ¡ 3k + 3 + k ¡ 2

= (k + 1)

) by the Principle of (strong) Mathematical Induction,

an = n, n 2 N .

2 a a0 = 0, a1 = 1, a2 = 4

an = 3an¡1 ¡ 3an¡2 + an¡3, n > 3

) a3 = 3a2 ¡ 3a1 + a0

= 3(4)¡ 3(1) + 0

= 9

a4 = 3a3 ¡ 3a2 + a1

= 3(9)¡ 3(4) + 1

= 16

a5 = 3a4 ¡ 3a3 + a2

= 3(16)¡ 3(9) + 4

= 25

a6 = 3a5 ¡ 3a4 + a3

= 3(25)¡ 3(16) + 9

= 36

a7 = 3a6 ¡ 3a5 + a4

= 3(36)¡ 3(25) + 16

= 49

b an = n2, n 2 N .

c a0 = 02, a1 = 12, a2 = 22 X

If ak = k2 for k > 0

then ak+1 = 3ak ¡ 3ak¡1 + ak¡2

= 3k2 ¡ 3(k ¡ 1)2 + (k ¡ 2)2

= 3k2 ¡ 3k2 + 6k ¡ 3 + k2 ¡ 4k + 4

= k2 + 2k + 1

= (k + 1)2

) by the Principle of (strong) Mathematical Induction,

an = n2, n 2 N .

3 a a0 = 1, a1 = 2, a2 = 4

an = 7an¡1 ¡ 16an¡2 + 12an¡3, n > 3

) a3 = 7a2 ¡ 16a1 + 12a0

= 7(4)¡ 16(2) + 12(1)

= 8

a4 = 7a3 ¡ 16a2 + 12a1

= 7(8)¡ 16(4) + 12(2)

= 16

Conjecture: an = 2n, n 2 N

a0 = 20, a1 = 21, a2 = 22 X

If ak = 2k

then ak+1 = 7ak ¡ 16ak¡1 + 12ak¡2

= 7(2k)¡ 16(2k¡1) + 12(2k¡2)

= 2k
¡
7¡ 16

2
+ 12

4

¢
= 2k(2)

= 2k+1

) by the Principle of (strong) Mathematical Induction,

an = 2n, n 2 N .

b a0 = 0, a1 = 2, a2 = 8

an = 7an¡1 ¡ 16an¡2 + 12an¡3, n > 3

) a3 = 7a2 ¡ 16a1 + 12a0

= 7(8)¡ 16(2) + 0

= 24

a4 = 7a3 ¡ 16a2 + 12a1

= 7(24)¡ 16(8) + 12(2)

= 64

a5 = 7a4 ¡ 16a3 + 12a2

= 7(64)¡ 16(24) + 12(8)

= 160

a0 = 0£ 20

a1 = 1£ 21

a2 = 2£ 22

a3 = 3£ 23

a4 = 4£ 24

a5 = 5£ 25

Conjecture: an = n2n, n 2 N

a0 = 0£ 20, a1 = 1£ 21, a2 = 2£ 22 X

If ak = k2k

then ak+1 = 7ak ¡ 16ak¡1 + 12ak¡2

= 7(k)2k ¡ 16(k ¡ 1)2k¡1 + 12(k ¡ 2)2k¡2

= 2k[7k ¡ 8(k ¡ 1) + 3(k ¡ 2)]

= 2k(7k ¡ 8k + 8 + 3k ¡ 6)

= 2k(2k + 2)

) by the Principle of (strong) Mathematical Induction,

an = n2n, n 2 N .

c a0 = 1, a1 = 3, a2 = 9

an = 7an¡1 ¡ 16an¡2 + 12an¡3, n > 3

) a3 = 7a2 ¡ 16a1 + 12a0

= 7(9)¡ 16(3) + 12(1)

= 27

magentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 IB HL OPT

Discrete Mathematics

Y:\HAESE\IB_HL_OPT-DM\IB_HL_OPT-DM_an\172IB_HL_OPT-DM_an.cdr Thursday, 20 February 2014 12:01:49 PM BRIAN



WORKED SOLUTIONS 173

a4 = 7a3 ¡ 16a2 + 12a1

= 7(27)¡ 16(9) + 12(3)

= 81

a0 = 30, a1 = 31, a2 = 32, a3 = 33, a4 = 34

Conjecture: an = 3n, n 2 N

a0 = 30, a1 = 31, a2 = 32 X

If ak = 3k

then ak+1 = 7ak ¡ 16ak¡1 + 12ak¡2

= 7(3k)¡ 16(3k¡1) + 12(3k¡2)

= 3k
¡
7¡ 16

3
+ 12

9

¢
= 3k(3)

= 3k+1

) by the Principle of (strong) Mathematical Induction,

an = 3n, n 2 N .

4 a0 = 0, an = an¡1 + 2n(2n+ 1)(n¡ 2) + 8n¡ 1

a a1 = a0 + (2)(3)(¡1) + 8¡ 1

= 0¡ 6 + 7

= 1

a2 = a1 + (4)(5)(0) + 16¡ 1

= 1 + 15

= 16

a3 = a2 + (6)(7)(1) + 24¡ 1

= 16 + 42 + 23

= 81

a4 = a3 + (8)(9)(2) + 32¡ 1

= 81 + 144 + 31

= 256

) a0 = 04, a1 = 14, a2 = 24, a3 = 34, a4 = 44

b an = n4, n 2 N

c a0 = 04 X

If ak = k4

then ak+1 = ak + 2(k + 1)(2k + 3)(k ¡ 1)

+ 8(k + 1)¡ 1

) ak+1 = k4 + 2(k + 1)(2k2 + k ¡ 3) + 8k + 8¡ 1

= k4 + 4k3 + 6k2 ¡ 4k ¡ 6 + 8k + 7

= k4 + 4k3 + 6k2 + 4k + 1

= (k + 1)4 fbinomial theoremg
) by the Principle of Mathematical Induction,

an = n4, n 2 N .

5 a a0 = 1, a1 = 2, an = 3an¡1 ¡ 2an¡2

a2 = 3a1 ¡ 2a0

= 3(2)¡ 2(1)

= 4

a3 = 3a2 ¡ 2a1

= 3(4)¡ 2(2)

= 8

a4 = 3a3 ¡ 2a2

= 3(8)¡ 2(4)

= 16

Conjecture: an = 2n

a0 = 20, a1 = 21 X

If ak = 2k then ak+1 = 3ak ¡ 2ak¡1

= 3(2k)¡ 2(2k¡1)

= 2k
¡
3¡ 2

2

¢
= 2k(2)

= 2k+1

) by the Principle of (strong) Mathematical Induction,

an = 2n, n 2 N .

b a0 = 1, a1 = 3, an = 4an¡1 ¡ 3an¡2

) a2 = 4a1 ¡ 3a0

= 4(3)¡ 3(1)

= 9

a3 = 4a2 ¡ 3a1

= 4(9)¡ 3(3)

= 27

a4 = 4a3 ¡ 3a2

= 4(27)¡ 3(9)

= 81

Conjecture: an = 3n, n 2 N

a0 = 30, a1 = 31 X

If ak = 3k then ak+1 = 4ak ¡ 3ak¡1

= 4(3k)¡ 3(3k¡1)

= 3k
¡
4¡ 3

3

¢
= 3k(3)

= 3k+1

) by the Principle of (strong) Mathematical Induction,

an = 3n, n 2 N .

6 a a0 = 1, an = nan¡1 + n!, n 2 Z+

) a1 = 1a0 + 1!

= 1 + 1

= 2 = 2!

a2 = 2a1 + 2!

= 2(2) + 2

= 6 = 3!

a3 = 3a2 + 3!

= 3(6) + 6

= 24 = 4!

a4 = 3a3 + 4!

= 4(24) + 24!

= 120 = 5!

Conjecture: an = (n+ 1)!, n 2 N

a0 = 1 = (0 + 1)! X

If ak = (k + 1)!

then ak+1 = (k + 1)ak + (k + 1)!

= (k + 1)(k + 1)! + (k + 1)!

= (k + 1)![k + 1 + 1]

= (k + 2)(k + 1)!

= (k + 2)!

) by the Principle of Mathematical Induction,

an = (n+ 1)!, n 2 N .

b a0 = 1, an = 2nan¡1 + n!2n, n 2 Z+

a1 = 2a0 + 1!21

= 2(1) + 2

= 4
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174 WORKED SOLUTIONS

a2 = 4a1 + 2!22

= 16 + 8

= 24

a3 = 6a2 + 3!23

= 6(24) + 6£ 8

= 192

a4 = 8a3 + 4!24

= 8(192) + 24£ 16

= 1920

a0 = 20 £ 1!

a1 = 2£ 2 = 2£ 2!

a2 = 22 £ 6 = 22 £ 3!

a3 = 23 £ 24 = 23 £ 4!

a4 = 24 £ 120 = 24 £ 5!

Conjecture: an = 2n(n+ 1)!, n 2 N

a0 = 20(1!) = 1 X

If ak = 2k(k + 1)!

then ak+1 = 2(k + 1)ak + (k + 1)! 2k+1

= 2(k + 1)£ 2k(k + 1)! + (k + 1)! 2k+1

= 2k+1(k + 1)![k + 1 + 1]

= 2k+1(k + 1)!(k + 2)

= 2k+1(k + 2)!

) by the Principle of Mathematical Induction,

an = 2n(n+ 1)!, n 2 N .

EXERCISE 1B.4

1 a an = an¡1 + 12an¡2, n > 2 with a0 = 12, a1 = 24
As an ¡ an¡1 ¡ 12an¡2 = 0, the characteristic equation

is ¸2 ¡ ¸¡ 12 = 0

) (¸¡ 4)(¸+ 3) = 0

) ¸ = 4, ¡3, distinct real roots.

) the general solution is an = c1(4)n+c2(¡3)n, n 2 N .

Using the initial conditions:

a0 = 12 ) c1 + c2 = 12 .... (1)

and a1 = 24 ) 4c1 ¡ 3c2 = 24 .... (2)

Solving (1) and (2) simultaneously, c1 = 60
7

and c2 = 24
7

.

) an = 60
7
(4n) + 24

7
(¡3)n, n 2 N .

b an ¡ 3an¡1 +2an¡2 = 0, n > 2 with a0 = 2, a1 = 3
The characteristic equation is

¸2 ¡ 3¸+ 2 = 0

) (¸¡ 1)(¸¡ 2) = 0

) ¸ = 1, 2, distinct real roots.

) the general solution is an = c1(1)n + c2(2)n, n 2 N .

Using the initial conditions:

a0 = 2 ) c1 + c2 = 2 .... (1)

and a1 = 3 ) c1 + 2c2 = 3 .... (2)

Solving (1) and (2) simultaneously, c1 = 1 and c2 = 1.

) an = 1 + 2n, n 2 N .

c xn+2 ¡ xn+1 ¡ 2xn = 0, n 2 N with x0 = 1, x1 = 1
) xn¡xn¡1¡2xn¡2 = 0 and has characteristic equation

¸2 ¡ ¸¡ 2 = 0

) (¸¡ 2)(¸+ 1) = 0

) ¸ = 2, ¡1, distinct real roots.

) the general solution is xn = c1(2)n+c2(¡1)n, n 2 N .

Using the initial conditions:

x0 = 1 ) c1 + c2 = 1 .... (1)

and x1 = 1 ) 2c1 ¡ c2 = 1 .... (2)

Solving (1) and (2) simultaneously, c1 = 2
3

, c2 = 1
3

.

) xn = 2
3
(2)n + 1

3
(¡1)n, n 2 N .

d an ¡an¡1 ¡ 2an¡2 = 0, n > 2 with a0 = 7, a1 = 11.

The characteristic equation is

¸2 ¡ ¸¡ 2 = 0

) (¸¡ 2)(¸+ 1) = 0

) ¸ = 2, ¡1, distinct real roots.

) the general solution is an = c1(2)n+c2(¡1)n, n 2 N .

Using the initial conditions:

a0 = 7 ) c1 + c2 = 7 .... (1)

and a1 = 11 ) 2c1 ¡ c2 = 11 .... (2)

Solving (1) and (2) simultaneously, c1 = 6 and c2 = 1.

) an = 6(2)n + (¡1)n, n 2 N .

e an = 5an¡1 ¡ 6an¡2, n > 2 with a0 = 3, a1 = 5.

The characteristic equation is

¸2 ¡ 5¸+ 6 = 0

) (¸¡ 2)(¸¡ 3) = 0

) ¸ = 2, 3, distinct real roots.

) the general solution is an = c1(2)n + c2(3)n, n 2 N .

Using the initial conditions:

a0 = 3 ) c1 + c2 = 3 .... (1)

and a1 = 5 ) 2c1 + 3c2 = 5 .... (2)

Solving (1) and (2) simultaneously, c1 = 4 and c2 = ¡1.

) an = 4(2n)¡ 3n or an = 2n+2 ¡ 3n, n 2 N .

2 an = an¡1 + an¡2 for n > 1 and a0 = 0, a1 = 1.

The characteristic equation is

¸2 ¡ ¸¡ 1 = 0

) ¸ =
1 §

p
1 ¡ 4(1)(¡1)

2
=

1 § p
5

2
) the general solution is

an = c1

µ
1 +

p
5

2

¶n

+ c2

µ
1 ¡ p

5

2

¶n

, n 2 N .

Using initial conditions:

a0 = 0 ) c1 + c2 = 0 .... (1)

and a1 = 1 ) c1

µ
1 +

p
5

2

¶
+ c2

µ
1 ¡ p

5

2

¶
= 1 .... (2)

Solving (1) and (2), c2 = ¡c1.

) c1

µ
1 +

p
5

2

¶
¡ c1

µ
1 ¡p

5

2

¶
= 1

)
c1 + c1

p
5 ¡ c1 + c1

p
5

2
= 1

) 2c1
p
5 = 2

) c1 = 1p
5

Hence c2 = ¡ 1p
5

Thus an =
1p
5

µ
1 +

p
5

2

¶n

¡ 1p
5

µ
1 ¡p

5

2

¶n

, n 2 N .

3 a an = 2an¡1 ¡ an¡2, n > 2 with a0 = a1 = 2
The characteristic equation is

¸2 ¡ 2¸+ 1 = 0

) (¸¡ 1)2 = 0

) ¸ = 1, a repeated root
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WORKED SOLUTIONS 175

) the general solution is an = (c1 + nc2)(1)
n, n 2 N .

) an = c1 + nc2
Using the initial conditions:

a0 = 2 ) c1 = 2

and a1 = 2 ) c1 + 2c2 = 2

) c2 = 0

) an = 2 for all n 2 N .

b an ¡ 10an¡1 + 25an¡2 = 0, n > 2

with a0 = 7, a1 = 4.
The characteristic equation is

¸2 ¡ 10¸+ 25 = 0

) (¸¡ 5)2 = 0

) ¸ = 5, a repeated root

) the general solution is an = (c1 + nc2)(5)n, n 2 N
Using the initial conditions:

a0 = 7 ) c15
0 = 7

and a1 = 4 ) (c1 + c2)5
1 = 4

Thus c1 = 7 and 7 + c2 = 4
5

) c2 = ¡ 31
5

) an = (7¡ 31
5
n)5n, n 2 N .

c an+2 + 4an+1 + 4an = 0, n 2 N

with a0 = 2, a1 = ¡2

) an + 4an¡1 + 4an¡2 = 0

which has characteristic equation

¸2 + 4¸+ 4 = 0

) (¸+ 2)2 = 0

) ¸ = ¡2, a repeated root

) the general solution is an = (c1+nc2)(¡2)n, n 2 N .

Using the initial conditions:

a0 = 2 ) c1 = 2

and a1 = ¡2 ) (c1 + c2)(¡2) = ¡2

) c1 + c2 = 1

) c2 = ¡1

) an = (2¡ n)(¡2)n for all n 2 N .

d xn+2+8xn+1+16xn = 0, n 2 N with x0 = 2, x1 = 0.

The characteristic equation is

¸2 + 8¸+ 16 = 0

) (¸+ 4)2 = 0

) ¸ = ¡4, a repeated root

) the general solution is xn = (c1+nc2)(¡4)n, n 2 N .

Using the initial conditions:

x0 = c1 = 2 and

x1 = (c1 + c2)(¡4) = 0

) c1 + c2 = 0

) c2 = ¡2

) xn = (2¡ 2n)(¡4)n

) xn = 2(1¡ n)(¡1)n 22n

) xn = (¡1)n 22n+1(1¡ n), n 2 N .

e xn+2 ¡ 2xn+1 + 2xn = 0, n 2 N with x0 = x1 = 2.

The characteristic equation is

¸2 ¡ 2¸+ 2 = 0

) ¸ =
2 §

p
4 ¡ 4(1)(2)

2

) ¸ =
2 § 2i

2
) ¸ = 1§ i, complex conjugate roots.

) the general solution is

xn = c1(1 + i)n + c2(1¡ i)n, n 2 N .

Using the initial conditions:

x0 = 2 ) c1 + c2 = 2 .... (1)

and x1 = 2 ) c1(1 + i) + c2(1¡ i) = 2

) (c1 + c2) + i(c1 ¡ c2) = 2 .... (2)

Solving (1) and (2) simultaneously, c1 = c2

Hence c1 = c2 = 1

) xn = (1 + i)n + (1¡ i)n, n 2 N

= (
p
2 cis ¼

4
)n + (

p
2 cis (¡¼

4
))n

= 2
n

2

£
cis (n¼

4
) + cis (¡n¼

4
)
¤

) xn = 2
n

2 £ 2 cos(n¼
4
) fcis µ + cis (¡µ) = 2 cos µg

) xn = 2
n

2
+1

cos(n¼
4
), n 2 N .

f an+2 ¡ 2an+1 + 5an = 0, n 2 N with a0 = 4 = a1.

The characteristic equation is

¸2 ¡ 2¸+ 5 = 0

) ¸ =
2 §

p
4 ¡ 4(1)(5)

2

) ¸ =
2 § 4i

2
) ¸ = 1§ 2i

) the general solution is

an = c1(1 + 2i)n + c2(1¡ 2i)n, n 2 N .

Using the initial conditions:

a0 = 4 ) c1 + c2 = 4

and a1 = 4 ) c1(1 + 2i) + c2(1¡ 2i) = 4

) (c1 + c2) + (2c1 ¡ 2c2)i = 4

) 2(c1 ¡ c2)i = 0

) c1 = c2 = 2

) an = 2(1 + 2i)n + 2(1¡ 2i)n, n 2 N .

Now 1 + 2i =
p
5 cis (arctan 2)

and 1¡ 2i =
p
5 cis (¡ arctan 2)

) an = 2(5
n

2 ) cis (n arctan 2)

+2(5
n

2 ) cis (¡n arctan 2)

) an = 2(5
n

2 )2 cos(n arctan 2)

fcis µ + cis (¡µ) = 2 cos µg

) an = 4(5
n

2 ) cos(n arctan 2), n 2 N .

4 As a0, a1, a, and b 2 Z , an = aan¡1 + ban¡2 is a sequence

of integers.

) a0 = c1¸
0
1 + c2¸

0
2 = c1 + c2 .... (1)

and a1 = c1¸1 + c2¸2

) a1 = c1(x+ iy) + c2(x¡ iy)

) a1 = (c1 + c2)x+ (c1 ¡ c2)iy

) (c1 ¡ c2)y = 0 fequating imaginary partsg
) c1 = c2 fy variesg

But from (1), a0 = c1 + c2 = 2c1 or 2c2

) c1 = c2 =
a0

2

R

I

2

1
µ

1 + 2i
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176 WORKED SOLUTIONS

5 a an = ¡2an¡1 ¡ 2an¡2, n > 2 with a0 = 2, a1 = ¡2.

As an + 2an¡1 + 2an¡2 = 0, the characteristic equation

is ¸2 + 2¸+ 2 = 0

) ¸ =
¡2 §

p
4 ¡ 4(1)(2)

2

) ¸ =
¡2 § 2i

2

) ¸ = ¡1§ i
) the general solution is

an = c1(¡1 + i)n + c2(¡1¡ i)n, n 2 N .

c1 = c2 =
a0

2
fusing 4g

= 2
2
= 1

Thus an = (¡1 + i)n + (¡1¡ i)n

) an =
£p

2 cis ( 3¼
4
)
¤ n

+
£p

2 cis (¡ 3¼
4
)
¤ n

) an = 2
n

2 cis ( 3¼n
4

) + 2
n

2 cis (¡ 3¼n
4

)

) an = 2
n

2

£
cis ( 3¼n

4
) + cis (¡ 3¼n

4
)
¤

) an = 2
n

2 £ 2 cos( 3¼n
4

)

fcis µ + cis (¡µ) = 2 cos µg

) an = 2
n

2
+1

cos( 3¼n
4

), n 2 N .

b an + an¡1 + an¡2 = 0, n > 2 with a0 = 4, a1 = ¡2.

The characteristic equation is

¸2 + ¸+ 1 = 0

) ¸ =
¡1 §

p
1 ¡ 4(1)(1)

2

) ¸ =
¡1 § i

p
3

2
) the general solutions is

an = c1

µ
¡1 + i

p
3

2

¶n

+ c2

µ
¡1 ¡ i

p
3

2

¶n

, n 2 N .

c1 = c2 =
a0

2
fusing 4g

= 4
2
= 2

) an = 2

µ
¡1 + i

p
3

2

¶n

+ 2

µ
¡1 ¡ i

p
3

2

¶n

) an = 2
£

cis ( 2¼
3
)
¤ n

+ 2
£

cis (¡ 2¼
3
)
¤ n

) an = 2
£

cis ( 2¼n
3

) + cis (¡ 2¼n
3

)
¤

) an = 2£ 2 cos( 2¼n
3

)

) an = 4cos( 2¼n
3

), n 2 N .

c un+2+4un+1+5un = 0, n 2 N with u0 = 4, u1 = ¡8.

The characteristic equation is

¸2 + 4¸+ 5 = 0

) ¸ =
¡4 §

p
16¡ 4(1)(5)

2
) ¸ = ¡2§ i

) the general solutions is

un = c1(¡2 + i)n + c2(¡2¡ i)n, n 2 N .

c1 = c2 =
u0

2
fusing 4g

= 4
2
= 2

Thus un = 2(¡2 + i)n + 2(¡2¡ i)n, n 2 N .

As µ = ¼ ¡ arctan( 1
2
), r =

p
5

) un = 2(
p
5 cis µ)n + 2(

p
5 cis (¡µ)n)

) un = 2

·
5

n

2 cis (nµ) + 5
n

2 cis (¡nµ)

¸
) un = 2£ 5

n

2 [cis (nµ) + cis (¡nµ)]

) un = 2£ 5
n

2 £ 2 cos(nµ)

) un = 4£ 5
n

2 cos(nµ),

µ = ¼ ¡ arctan( 1
2
), n 2 N .

d an = 4an¡1 ¡ 5an¡2, n > 2 with a0 = 6, a1 = 12.

The characteristic equation is

¸2 ¡ 4¸+ 5 = 0

) ¸ =
4 §

p
16¡ 4(1)(5)

2
) ¸ = 2§ i

) the general solution is

an = c1(2 + i)n + c2(2¡ i)n, n 2 N .

c1 = c2 =
a0

2
fusing 4g

= 6
2
= 3

) an = 3(2 + i)n + 3(2¡ i)n, n 2 N .

R

I

-Qw

Wd"

-Wd"

R

I

1

-1

-2

µ

-µ

R

I

1

-1

2
µ
-µ

µ = arctan( 1
2
), r =

p
5

Thus an = 3
£p

5 cis µ
¤ n

+ 3
£p

5 cis (¡µ)
¤ n

= 3£ 5
n

2 cis (nµ) + 3£ 5
n

2 cis (¡nµ)

= 3£ 5
n

2 [cis (nµ) + cis (¡nµ)]

= 3£ 5
n

2 £ 2 cos(nµ)

) an = 6£ 5
n

2 cos(nµ), µ = arctan( 1
2
), n 2 N .

R

I

1

-1

-1

-1 + i

-1 - i

Ef"

-Ef"
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WORKED SOLUTIONS 177

6 Let an = the number of pipe constructions of length n metres,

n 2 N .

a0 = 1 fthe empty set is uniqueg
a1 = 1 fone white pipeg

a2 = 3

a3 =
.
.
.

5

Now consider a pipe construction of length n metres, n > 2.

If the first section is white

the remaining (n¡1) metres can be constructed in an¡1 ways.

If the first section is not white, then it must start with red or blue

or

Thus an = an¡1+2an¡2 for n > 2 which has characteristic

equation ¸2 ¡ ¸¡ 2 = 0

) (¸¡ 2)(¸+ 1) = 0

) ¸ = 2 or ¡1, distinct real roots.

) the general solution is an = c1(2n) + c2(¡1)n, n 2 N .

Using the initial conditions:

a0 = 1 ) c1 + c2 = 1 .... (1)

and a1 = 1 ) 2c1 ¡ c2 = 1 .... (2)

Solving (1) and (2) simultaneously, c1 = 2
3

and c2 = 1
3

.

Hence, an = 2
3
(2n) + 1

3
(¡1)n

) an = 1
3

£
2n+1 + (¡1)n

¤
, n 2 N

7

a0 = 1 fthe empty set is uniqueg
a1 = 2

a2 = 5

Consider a line of length n units where n > 2.

If the first block is green

the remainder of the line can be constructed in an¡2 ways.

If the first block is not green, then it must be either red or blue

the remainder of the line, in each case, can be constructed in

an¡1 ways.

Thus an = 2an¡1 + an¡2 where n > 2.

This recurrence relationship has characteristic equation

¸2 ¡ 2¸¡ 1 = 0

) ¸ =
2 §

p
4 ¡ 4(1)(¡1)

2

) ¸ = 1§
p
2

Hence an = c1(1 +
p
2)n + c2(1¡p

2)n, n 2 N .

Using the initial conditions:

a0 = 1 ) c1 + c2 = 1 .... (1)

and a1 = 2 ) c1(1 +
p
2) + c2(1¡

p
2) = 2

) (c1 + c2) + (c1 ¡ c2)
p
2 = 2 .... (2)

Subtracting (1) from (2) givesp
2(c1 ¡ c2) = 1

)
p
2(c1 ¡ 1 + c1) = 1 fc2 = 1¡ c1, using (1)g

) 2
p
2c1 ¡

p
2 = 1

) 2
p
2c1 = 1 +

p
2

) c1 =
1 +

p
2

2
p
2

Hence c2 =
1 ¡p

2

2
p
2

) an =
1 +

p
2

2
p
2

(1 +
p
2)n +

1 ¡p
2

1
p
2

(1¡
p
2)n

) an = 1
2
p
2
(1 +

p
2)n+1 ¡ 1

2
p
2
(1¡

p
2)n+1

) an = 1
2
p
2

£
(1 +

p
2)n+1 ¡ (1¡

p
2)n+1

¤
, n 2 N

8 Let an = the number of ternary strings of length n with

no consecutive 0s, n 2 N .

a0 = 1 fthe unique empty string has no consecutive 0sg
a1 = 3 f0, 1, 2g
a2 = 8 f01, 02, 10, 11, 12, 20, 21, 22g
Consider a string of length n where n > 2.

Either the first digit is 0 or is not 0.

If the first digit is 0,

the second is 1 or 2 (two possibilities) and the remainder of digits

on the string can be constructed in an¡2 ways

1st 2nd 3rd 4th ....| {z }
ways: 1 2 (n¡ 2) bits

If the first digit is not 0,

then it must be 1 or 2 (two possibilities) and the remainder of the

string can be constructed in an¡1 ways

1st 2nd 3rd 4th ....| {z }
ways: 2 (n¡ 1) bits

) an = 2an¡1 + 2an¡1 for n > 2.

W

, ,
W W R B

WW W W W

W W

R

R

B

B

1 m (n - 1) m

2 m (n - 2) m

2 m (n - 2) m

,

, , , ,

1 1 2

2 (n - 2) units

1 (n - 1) units

1 (n - 1) units

, , ,

,
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178 WORKED SOLUTIONS

The characteristic equation is

¸2 ¡ 2¸¡ 2 = 0

) ¸ =
2 §

p
4 ¡ 4(1)(¡2)

2

) ¸ = 1§
p
3

) an = c1(1 +
p
3)n + c2(1¡p

3)n, n 2 N .

Using the initial conditions:

a0 = 1 ) c1 + c2 = 1 .... (1)

and a1 = 3 ) c1(1 +
p
3) + c2(1¡

p
3) = 3

) (c1 + c2) + (c1 ¡ c2)
p
3 = 3 .... (2)

Subtracting (1) from (2) givesp
3(c1 ¡ c2) = 2

)
p
3(c1 ¡ 1 + c1) = 2 fc2 = 1¡ c1, using (1)g

) 2
p
3c1 ¡

p
3 = 2

) c1 =
2 +

p
3

2
p
3

p
3p
3

) c1 =
3 + 2

p
3

6

Hence, c2 =
3 ¡ 2

p
3

6

) an =
3 + 2

p
3

6
(1+

p
3)n +

3 ¡ 2
p
3

6
(1¡p

3)n, n 2 N .

9 Let an = the number of sequences of $1 and $2 coins which

sum to $n, n 2 N .

a0 = 1 fthe empty set is uniqueg
a1 = 1 fa $1 coing
a2 = 2

a3 = 3 f1 - 1 - 1, 1 - 2, 2 - 1g
Suppose a travel card worth $n is purchased, n > 2.

The first coin deposited is either $1 or it is not $1.

If it is a $1 coin,

then the remaining $(n¡ 1) can be purchased in an¡1 ways.

If it is not a $1,

it is a $2 coin and the remaining $(n¡ 2) can be purchased in

an¡2 ways.

) an = an¡1 + an¡2 for n > 2.

The characteristic equation is

¸2 ¡ ¸¡ 1 = 0

) ¸ =
1 §

p
1 ¡ 4(1)(¡1)

2

) ¸ =
1 § p

5

2

) an = c1

µ
1 +

p
5

2

¶n

+ c2

µ
1 ¡p

5

2

¶n

, n 2 N .

Using the initial conditions:

a0 = 1 ) c1 + c2 = 1 .... (1)

and a1 = 1

) c1

µ
1 +

p
5

2

¶
+ c2

µ
1 ¡ p

5

2

¶
= 1

) (c1 + c2) + (c1 ¡ c2)
p
5 = 2 .... (2)

Subtracting (1) from (2) givesp
5(c1 ¡ c2) = 1

)
p
5(c1 ¡ 1 + c1) = 1 fc2 = 1¡ c1, using (1)g

) 2
p
5c1 ¡

p
5 = 1

) c1 =
1 +

p
5

2
p
5

and c2 = ¡1 ¡p
5

2
p
5

Hence, an =
1 +

p
5

2
p
5

µ
1 +

p
5

2

¶n

¡ 1 ¡p
5

2
p
5

µ
1 ¡ p

5

2

¶n

) an =
(1 +

p
5)n+1 ¡ (1¡ p

5)n+1

2n+1
p
5

, n 2 N

EXERCISE 1C.1

1 d j n ) there exists k 2 Z such that n = kd

) an = kad, k 2 Z

) an = k(ad), k 2 Z

) ad j an
2 d j n and d j m

) there exist k1, k2 2 Z such that n = k1d and m = k2d

) an = k1ad and bm = k2bd

) an+ bm = k1ad+ k2bd

) an+ bm = d(k1a+ k2b) where k1a+ k2b 2 Z

) d j an+ bm

3 d j n ) there exists k 2 Z+ such that n = kd

) n > d fas k > 1g
) d 6 n

4 Let d be a common positive divisor of a and a+ 1

) d j a and d j a+ 1

) d j (a+ 1)¡ a flinearityg
) d j 1
) d = 1 fas d 6= 0g

5 a As 14m+ 20n = 2(7m+ 20n) where 7m+ 20n 2 Z ,

then 2 j 14m+ 20n

) 2 j 101, which is false.

Hence, no such integers m, n exist.

b As 14m+ 21n = 7(2m+ 3n) where 2m+ 3n 2 Z ,

then 7 j 14m+ 21n

) 7 j 100, which is false

Hence, no such integers m, n exist.

6 a, b, c 2 Z and a 6= 0.

a j b and a j c
) there exist k1, k2 2 Z such that b = k1a and c = k2a

) b§ c = k1a§ k2a

) b§ c = (k1 § k2)a, k1 § k2 2 Z

) a j (b§ c)

7 a, b, c, d 2 Z , a 6= 0, c 6= 0.

a j b and c j d
) there exist k1, k2 2 Z such that b = k1a and d = k2c

) bd = (k1k2)ac, where k1, k2 2 Z

) ac j bd
8 p, q 2 Z

p j q
) there exists k 2 Z such that q = kp

) qn = knpn where kn 2 Z

) pn j qn

feither two $1 or one $2g
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WORKED SOLUTIONS 179

EXERCISE 1C.2

1 a As 66 = 22£ 3 then 3 j 66
b As 385 = 55£ 7 then 7 j 385
c As 0 = 0£ 654 then 654 j 0

2 a a = 100, b = 17
a

b
= 5:882::::

) q = 5

Now r = a¡ bq = 100¡ 17£ 5

) r = 15

b a = 289, b = 17
a

b
= 17

) q = 17 and r = 0

c a = ¡44, b = 17
a

b
= ¡2:588::::

) q = ¡3

Now r = a¡ bq = ¡44¡ 17(¡3)

) r = 7

d a = ¡100, b = 17
a

b
= ¡5:882::::

) q = ¡6

Now r = a¡ bq = ¡100¡ 17(¡6)

) r = 2

3 a and b are not multiples of each other.

4 a No, as the only positive divisors of q are 1 and q and

of r are 1 and r
) if p j qr then p = 1, q, or r

) either p j q or p j r or both.

b Notice, for example, that 6 j 4£ 3 but 6 j= 4 and 6 j= 3.

p must be composite and p = mn where n j q, m j r.

5 If at least one of the k integers is even then the product is even.

Using the contrapositive:

If the product is not even

) all integers are odd

) the product is odd ) all integers are odd.

6 a On dividing any integer by 3 the remainder is 0, 1, or 2.

) the integer has form 3a, 3a+ 1, or 3a+ 2
) an integer squared has form

(3a)2, (3a+ 1)2, or (3a+ 2)2

= 9a2, 9a2 + 6a+ 1, or 9a2 + 12a+ 4

= 3[3a2], 3[3a2 + 2a] + 1, or 3[3a2 + 4a+ 1] + 1

where the only remainders are 0 and 1

= 3k1, 3k2 + 1, or 3k3 + 1

) of form 3k or 3k + 1, k 2 Z .

b On division of an integer by 4, the remainder is 0, 1, 2, or 3
) the integer squared is

(4a)2, (4a+ 1)2, (4a+ 2)2, or (4a+ 3)2

= 16a2, 16a2 + 8a+ 1, 16a2 + 16a+ 4,

or 16a2 + 24a+ 9

= 4(4a2), 4(4a2 + 2a) + 1, 4(4a2 + 4a+ 1),

or 4(4a2 + 6a+ 2) + 1

= 4q1, 4q2 + 1, 4q3, or 4q4 + 1

) of form 4q or 4q + 1, q 2 Z .

c 1 234 567 = 4(308 641) + 3

which is of the form 4q + 3, q 2 Z
) 1 234 567 is not a perfect square ffrom bg

7 a To prove 5 j a , 5 j a2
() ) If 5 j a then a = 5q for some q 2 Z

) a2 = 25q2

) a2 = 5(5q2) where 5q2 2 Z

) 5 j a2
(( ) Instead of showing 5 j a2 ) 5 j a, we will prove

the contrapositive 5 j= a ) 5 j= a2.

If 5 j= a then

a = 5k + 1, 5k + 2, 5k + 3, or 5k + 4.
Hence

a2 = 25k2 + 10k + 1, 25k2 + 20k + 4,

25k2 + 30k + 9, or 25k2 + 40k + 16

) a2 = 5(5k2 + 2k) + 1, 5(5k2 + 4k) + 4,

5(5k2 + 6k + 1) + 4,

or 5(5k2 + 8k + 3) + 1

) a2 = 5b+ 1 or 5b+ 4 for b 2 Z

) 5 j= a2
Hence 5 j= a ) 5 j= a2, and therefore 5 j a2 ) 5 j a

fcontrapositiveg
b 3 j a2 , 9 j a2

() ) 3 j a2 ) 3 j a fExample 19g
) a = 3k for some k 2 Z

) a2 = 9k2

) 9 j a2 as k2 2 Z

(( ) 9 j a2 ) a2 = 9k, k 2 Z

) a2 = 3(3k) where 3k 2 Z

) 3 j a2

8 a n = 2 ) (n¡ 2) = 0

) (n+ 3)(n¡ 2) = 0

b n = ¡3 ) n+ 3 = 0

) (n+ 3)(n¡ 2) = 0

6) n = 2

That is the converse is not true.

c i The statement is “n2 + n¡ 6 = 0 ) n = 2”.

n2 + n¡ 6 = 0

) (n+ 3)(n¡ 2) = 0

) n = ¡3 or 2

) the statement is false.

ii The statement is “n = 2 ) n2 + n¡ 6 = 0”.

n = 2 ) (n¡ 2) = 0

) (n¡ 2)(n+ 3) = 0

) n2 + n¡ 6 = 0

) the statement is true.

iii The statement is “n2 + n¡ 6 = 0 ) n = 2”.
) the statement is false. fSee c ig

iv The statement is “a < b ) 4ab < (a+ b)2 ”.

Notice that (a+ b)2 ¡ 4ab

= a2 + 2ab+ b2 ¡ 4ab

= a2 ¡ 2ab+ b2

= (a¡ b)2
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180 WORKED SOLUTIONS

a < b ) a¡ b < 0 and (a¡ b)2 > 0

) (a+ b)2 ¡ 4ab > 0

) 4ab < (a+ b)2

) the statement is true.

v, vi, vii
These statements all read

“a < b , 4ab < (a+ b)2”

and so are either all true or all false.
They are all false.

For example, if a = 2, b = 1 then b < a

but 4ab = 8 and

(a+ b)2 = 9

and so 4ab < (a+ b)2.

9 a 8p+ 7 = 8p+ 4 + 3, p 2 Z

= 4(2p+ 1) + 3 where 2p+ 1 2 Z

= 4q + 3 where q 2 Z

b 11 = 4(2) + 3 has form 4q + 3, q 2 Z

but 11 = 8(1) + 3 is not in the form 8p+ 7.

or suppose 11 = 8p+ 7 where p 2 Z

) 8p = 4

) p = 1
2

, a contradiction

) 11 cannot be put in the form 8p+ 7, p 2 Z .

10 a Every integer n has form 3a, 3a + 1, or 3a ¡ 1 where

a 2 Z
) n3 = 27a3 or 27a3 § 27a2 + 9a§ 1
) n3 = 9(3a3) or 9(3a3 § 3a2 + a)§ 1

) n3 has form 9k or 9k § 1

b Every integer n has form 5a, 5a § 1, or 5a § 2 where

a 2 Z .

) n4 = (5a)4 = 625a4, or

(5a§ 1)4 = 625a4 § 500a3 + 150a2 § 20a+ 1, or

(5a§ 2)4 = 625a4 § 1000a3 + 600a2 § 160a+ 16

) n4 = 5(125a4), or

5(125a4 § 100a3 + 30a2 § 4a) + 1, or

5(125a4 § 200a3 + 120a2 § 32a+ 3) + 1

) n4 has form 5k or 5k + 1, k 2 Z .

11 Suppose 3k2 ¡ 1 = n2 for some n 2 Z

) 3k2 ¡ 1 = (3a)2 or (3a§ 1)2

fas n must have one of the forms 3a, 3a+ 1, 3a¡ 1g
) 3k2 = 9a2 + 1 or 9a2 § 6a+ 2

All 3 of these forms are impossible as

LHS is divisible by 3 and

RHS is not divisible by 3

) the supposition is false

) integers of the form 3k2 ¡ 1, k 2 Z cannot be perfect

squares.

12 n 2 Z + ) n must have one of the forms 6a, 6a§ 1, 6a§ 2,

6a+ 3 where a 2 N .

If n = 6a, f(n) =
6a(6a + 1)(12a + 1)

6
2 Z

If n = 6a+ 1, f(n) =
(6a + 1)(6a + 2)(12a + 3)

6

=
2 £ 3 £ (6a + 1)(3a + 1)(4a + 1)

6
which is in Z

If n = 6a¡ 1, f(n) =
(6a ¡ 1)(6a)(12a ¡ 1)

6
which is in Z

If n = 6a+ 2, f(n) =
(6a + 2)(6a + 3)(12a + 5)

6

=
2 £ 3 £ (3a + 1)(2a + 1)(12a + 5)

6
which is in Z

If n = 6a¡ 2, f(n) =
(6a ¡ 2)(6a ¡ 1)(12a ¡ 3)

6

=
2 £ 3 £ (3a ¡ 1)(6a ¡ 1)(4a ¡ 1)

6
which is in Z

If n = 6a+ 3, f(n) =
(6a + 3)(6a + 4)(12a + 7)

6

=
3 £ 2 £ (2a + 1)(3a + 2)(12a + 7)

6
which is in Z

Alternatively:

n(n + 1)(2n+ 1)

6
= 12 + 22 + 32 + ::::+ n2

is a well known formula for the sum of the first n perfect squares

and the RHS is always an integer.

) the LHS is always an integer.

13 The first repunit is 1, which is a perfect square.

The other repunits are 11, 111, 1111, 11 111, .... and the nth

repunit is

1 + 101 + 102 + 103 + ::::+ 10n¡1

= 1 + 10 + other terms which are all divisible by 4

) the nth repunit has form 4k1 + 11

= 4k1 + 8 + 3

= 4(k1 + 2) + 3

= 4k + 3, k 2 Z

However, we proved in 6 b of this Exercise that all perfect squares

have form 4k or 4k + 1.

Hence, the nth repunit cannot be a perfect square.

14 A non-negative integer a has form 7n, 7n § 1, 7n § 2, or

7n§ 3.

) a2 = 49n2, 49n2 § 14n+ 1, 49n2 § 28n+ 4,

or 49n2 § 42n+ 9

) a2 = 7(7n2), 7(7n2 § 2n) + 1, 7(7n2 § 4n) + 4,

or 7(7n2 § 6n+ 1) + 2

) a2 has form 7k, 7k + 1, 7k + 4, or 7k + 2 .... (1)

Also a3 = 343n3, 343n3 § 147n2 + 21n§ 1,

343n3 § 294n2 + 84n§ 8,

or 343n3 § 441n2 + 189n§ 27

) a3 = 7(49n3), 7(49n3 § 21n2 + 3n)§ 1,

7(49n3 § 42n2 + 12n)§ 8,

or 7(49n3 § 63n2 + 27n)§ 27

) a3 has form 7k, 7k § 1, 7k § 8, or 7k § 27, k 2 Z

) a3 has form 7k or 7k § 1, k 2 Z .... (2)

From both (1) and (2) the only cases common are a2 and a3 have

form 7k and 7k + 1.

15 a n is either even or odd
) n = 2a or 2a+ 1, a 2 Z +

1

1

1

1

1

1
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WORKED SOLUTIONS 181

) 7n3 + 5n

= n(7n2 + 5)

= 2a(7(2a)2 + 5) or (2a+ 1)(7(2a+ 1)2 + 5)

= 2a(28a2 + 5) or (2a+ 1)(28a2 + 28a+ 12)

= 2a(28a2 + 5) or 4(2a+ 1)(7a2 + 7a+ 3)

both of which are even.

b n 2 Z +

) n has form 3a or 3a§ 1
) n(7n2 + 5)

= 3a(63a2 + 5) or (3a§ 1)(7[3a§ 1]2 + 5)

= (3a§ 1)(63a2 § 42a+ 12)

= 3(3a§ 1)(21a2 § 14a+ 4)

) n(7n2 + 5) = 3k, k 2 Z

c From a and b, n(7n2 + 5) is divisible by 2 and 3

) n(7n2 + 5) is divisible by 6.

d Any integer n has form 6n, 6n § 1, 6n § 2, 6n + 3,

n 2 Z
) n(7n2 + 5) has form

= 6n(7(6n)2 + 5) which is divisible by 6.

or (6n§ 1)(7(6n§ 1)2 + 5)

= (6n§ 1)(252n2 § 84n+ 12)

= 6(6n§ 1)(42n2 § 14n+ 2)

which is divisible by 6.

or (6n§ 2)(7(6n§ 2)2 + 5)

= 2(3n§ 1)(252n2 § 168n+ 33)

= 6(3n§ 1)(84n2 § 56n+ 11)

which is divisible by 6.

or (6n+ 3)(7(6n+ 3)2 + 5)

= 3(2n+ 1)(252n2 + 252n+ 68)

= 6(2n+ 1)(126n2 + 126n+ 34)

which is divisible by 6.

In all cases, n(7n2 + 5) is divisible by 6.

16 a3 ¡ a = a(a2 ¡ 1) = a(a+ 1)(a¡ 1) which is the product

of 3 consecutive integers one of which must be a multiple of 3

) 3 j (a3 ¡ a).

17 a Consider 4a+ 1 and 4b+ 1; a, b 2 Z

) their product

= (4a+ 1)(4b+ 1)

= 16ab+ 4a+ 4b+ 1

= 4(4ab+ a+ b) + 1 where 4ab+ a+ b 2 Z

which has form 4k + 1, k 2 Z .

b Consider 4a+ 3 and 4b+ 3
) the product

= (4a+ 3)(4b+ 3)

= 16ab+ 12a+ 12b+ 9

= 4(4ab+ 3a+ 3b+ 2) + 1

where 4ab+ 3a+ 3b+ 2 2 Z

which has form 4p+ 1, p 2 Z .

c Any integer has form

4k, 4k + 1, 4k + 2, or 4k + 3 for k 2 Z
) any odd integer has form 4k + 1 or 4k + 3

) the square of an integer is (4k + 1)2 or (4k + 3)2.

From a and b such squares have form 4p+ 1, p 2 Z .

d From c, for any odd integer a,

a2 = 4p+ 1 for p 2 Z

) a4 = 16p2 + 8p+ 1

) a4 = 8(2p2 + p) + 1

which has form 8k + 1, k 2 Z .

18 a Proof: (By the Principle of Mathematical Induction)

Pn is that “n(n+ 1)(n+ 2) is divisible by 6”, n 2 Z+.

(1) If n = 1, 1£ 2£ 3 = 6 is divisible by 6.

) P1 is true.

(2) If Pk is true, then k(k + 1)(k + 2) = 6A, A 2 Z .

) (k + 1)(k + 2)(k + 3)

= k(k + 1)(k + 2) + 3(k + 1)(k + 2)

= 6A+ 3(2B)

fas (k + 1), (k + 2) are consecutive,

one of them must be eveng
= 6(A+B) where A+B 2 Z

) (k + 1)(k + 2)(k + 3) is divisible by 6.

Thus P1 is true, and Pk+1 is true whenever Pk is true.

) Pn is true, n 2 Z+.

b Every integer n has form 6a, 6a + 1, 6a + 2, 6a + 3,

6a+ 4, or 6a+ 5, a 2 Z .

) n(n+ 1)(n+ 2)

= 6a(6a+ 1)(6a+ 2), or (6a+ 1)(6a+ 2)(6a+ 3),

or (6a+ 2)(6a+ 3)(6a+ 4),

or (6a+ 3)(6a+ 4)(6a+ 5),

or (6a+ 4)(6a+ 5)(6a+ 6),

or (6a+ 5)(6a+ 6)(6a+ 7)

= 6a(6a+ 1)(6a+ 2), or 6(6a+ 1)(3a+ 1)(2a+ 1),

or 6(3a+ 1)(2a+ 1)(6a+ 4),

or 6(2a+ 1)(3a+ 2)(6a+ 5),

or 6(6a+ 4)(6a+ 5)(a+ 1),

or 6(6a+ 5)(a+ 1)(6a+ 7)

In each case divisibility by 6 occurs.

19 a Proof: (By the Principle of Mathematical Induction)

Pn is that “5 j (n5 ¡ n)”, n 2 Z+.

(1) If n = 1, 15 ¡ 1 = 0 and 0 = 5(0)

) 5 j 0
) P1 is true.

(2) If Pk is true, then k5 ¡ k = 5A, A 2 Z .

) (k + 1)5 ¡ (k + 1)

= k5 + 5k4 + 10k3 + 10k2 + 5k + 1¡ k ¡ 1

= k5 ¡ k + 5(k4 + 2k3 + 2k2 + k)

= 5A+ 5B where A, B 2 Z

= 5(A+B)

Thus P1 is true, and Pk+1 is true whenever Pk is true.

) Pn is true, n 2 Z+.

b n5 ¡ n = n(n4 ¡ 1)

= n(n2 ¡ 1)(n2 + 1)

= n(n+ 1)(n¡ 1)(n2 + 1)

where n has form 5a, 5a+ 1, 5a+ 2, 5a+ 3, 5a+ 4

) n5 ¡ n = 5a(5a+ 1)(5a¡ 1)(25a2 + 1)

which is divisible by 5

or = (5a+ 1)(5a+ 2)(5a)((5a+ 1)2 + 1)

which is divisible by 5
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182 WORKED SOLUTIONS

or = (5a+ 2)(5a+ 3)(5a+ 1)(25a2 + 20a+ 5)

= 5(5a+ 2)(5a+ 3)(5a+ 1)(5a2 + 4a+ 1)

which is divisible by 5

or = (5a+ 3)(5a+ 4)(5a+ 2)(25a2 + 30a+ 10)

= 5(5a+ 3)(5a+ 4)(5a+ 2)(5a2 + 6a+ 2)

which is divisible by 5

or = (5a+ 4)(5a+ 5)(5a+ 3)(25a2 + 40a+ 17)

= 5(5a+ 4)(a+ 1)(5a+ 3)(25a2 + 40a+ 17)

which is divisible by 5

So, in all cases n5 ¡ n is divisible by 5.

20 Let the integers be n¡ 1, n, and n+ 1, n 2 Z .

) the sum of cubes

= (n¡ 1)3 + n3 + (n+ 1)3

= n3 ¡ 3n2 + 3n¡ 1 + n3 + n3 + 3n2 + 3n+ 1

= 3n3 + 6n

= 3n(n2 + 2) which is divisible by 3.

We now need to prove that n(n2 + 2) is divisible by 3 for all

n 2 Z .

Proof: If n is divisible by 3 there is nothing to prove.

If n is not divisible by 3 then n = 3k § 1.

) n(n2 + 2) = (3k § 1)(9k2 § 6k + 3)

= 3(3k § 1)(3k2 § 2k + 1)

which is divisible by 3.

EXERCISE 1C.3

1 110 101 0112

= 28 + 27 + 25 + 23 + 21 + 1 (in base 10)

= 427 (in base 10)

2 21 012 2013

= 2(37) + 1(36) + 1(34) + 2(33) + 2(32) + 1 (in base 10)

= 5257 (in base 10)

3 a 3 347 r

3 115 2

3 38 1

3 12 2

3 4 0

1 1 ) 34710 = 110 2123

b 8 1234 r

8 154 2

8 19 2

2 3 ) 123410 = 23228

c 7 5728 r

7 818 2

7 116 6

7 16 4

2 2 ) 572810 = 22 4627

4 5 87 532 r

5 17 506 2

5 3501 1

5 700 1

5 140 0

5 28 0

5 5 3

1 0 ) 87 53210 = 10 300 1125

5 a 1 001 111 1012

= 29 + 26 + 25 + 24 + 23 + 22 + 1 (in base 10)

= 63710

b 4 637 r

4 159 1

4 39 3

4 9 3

2 1 ) 63710 = 213314

c 8 637 r

8 79 5

8 9 7

1 1 ) 63710 = 11758

6 a 201 021 1023

= 2(38) + 36 + 2(34) + 33 + 32 + 2 (base 10)

= 14 05110

b 9 14 051 r

9 1561 2

9 173 4

9 19 2

2 1 ) 14 05110 = 212429

7 2 122 122 1023

= 2(39) + 38 + 2(37) + 2(36) + 35 + 2(34) + 2(33)

+ 32 + 2 (in base 10)

= 5222910

9 52 229 r

9 5803 2

9 644 7

9 71 5

7 8 ) 2 122 122 1023 = 78 5729

8 In 5, 29

1
28

0

1(2) + 0 = 2

27

0
26

1

0(2) + 1 = 1

25

1
24

1

1(2) + 1 = 3

23

1
22

1

1(2) + 1 = 3

2
0 12

0(2) + 1 = 1

) 1 001 111 1012 = 21 3314

|{z} |{z} |{z} |{z} |{z}
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WORKED SOLUTIONS 183

In 7, 39

2
38

1

2(3) + 1 = 7

37

2
36

2

2(3) + 2 = 8

35

1
34

2

1(3) + 2 = 5

33

2
32

1

2(3) + 1 = 7

3
0 23

0(3) + 2 = 2

) 2 122 122 1023 = 785729
Suppose we have columns

k8

a8

k7

a7

k6

a6

k5

a5

k4

a4

k3

a3

k2

a2

k1

a1

k0

a0 k base k

We pair the digits from right to left.

For base k2, a1k + a0 gives the number of k0s

a3k + a2 gives the number of k2s

a5k + a4 gives the number of k4s

a7k + a6 gives the number of k6s

etc.

9 We use the reverse process to that in 8.

For example, in 5 we showed that

1 001 111 1012 = 21 3314
or 2

24 = 102

1

14 = 012

3

34 = 112

3

34 = 112

14

14 = 012

= 1 0 0 1 1 1 1 1 0 12

::::
k6

a3

k4

a2

k2

a1

k0

a0 k2

a0
k2

becomes b1k + b0

a1
k2

.

.

.

becomes b3k + b2

etc.

10 In base 2, 04 = 002, 14 = 012, 24 = 102, 34 = 112.

) 3

= 1 1

1

0 1

3

1 1

1

0 1

2

1 0

3

1 1

0

0 0

1

0 1

24

1 02

11 In base 3, 09 = 003, 19 = 013, 29 = 023,

39 = 103, 49 = 113, 59 = 123,

69 = 203, 79 = 213, 89 = 223.

) 6

= 2 0

3

1 0

2

0 2

6

2 0

4

1 1

5

1 2

2

0 2

3

1 0

7

2 1

89

2 23

12 56 352 7438

= 5(87) + 6(86) + 3(85) + 5(84) + 2(83) + 7(82)

+ 4(8) + 3 (in base 10)

= 12 178 91510

2 12 178 915 r

2 6 089 457 1

2 3 044 728 1

2 1 522 364 0

2 761 182 0

2 380 591 0

2 190 295 1

2 95 147 1

2 47 573 1

2 23 786 1

2 11 893 0

2 5946 1

2 2973 0

2 1486 1

2 743 0

2 371 1

2 185 1

2 92 1

2 46 0

2 23 0

2 11 1

2 5 1

2 2 1

1 0

) 56 352 7438

= 10 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 1|{z} 1 0 0|{z} 0 1 1|{z} 2

Note: In 5 6 3 5 2 7

7 = 1112 etc.

4

4 = 1002

38

3 = 0112

gives a quicker method for converting base 8 to base 2

numbers.

13 Suppose 5
7
= a1 £ 10¡1 + a2 £ 10¡2 + ::::

) 50
7

= a1 +
a2

10
+

a3

102
+ ::::

) 7 + 1
7
= a1 +

a2

10
+

a3

102
+ ::::

) a1 = 7

Also 500
7

= 10a1 + a2 +
a3

10
+

a4

102
+ ::::

) 71 3
7
= 70 + a2 +

a3

10
+

a4

102
+ ::::

) 71 = 70 + a2
) a2 = 1

And 5000
7

= 100a1 + 10a2 + a3 +
a4

10
+ ::::

) 714 2
7
= 710 + a3 +

a4

10
+ ::::

) 714 = 710 + a3
) a3 = 4

Continuing this process gives

a4 = 2, a5 = 8, a6 = 5, a7 = 7, a8 = 1, etc.

) 5
7
= 0:714 285 714 285::::

That is, 5
7
= 0:714 285.

|{z} |{z} |{z} |{z} |{z}

|{z} |{z} |{z} |{z} |{z}

|{z} |{z} |{z} |{z}
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184 WORKED SOLUTIONS

EXERCISE 1C.4

1 (1) First we prove that

‘if p2 is even then p is even; p 2 Z + ’.

Proof: p = 2t or 2t+ 1 for every p 2 Z+

) p2 = 4t2 or 4t2 + 4t+ 1

) p2 = 2(2t2)| {z }
even

or 2(2t2 + 2t) + 1| {z }
odd

Thus p2 being even can only result in p being even.

(2) Now we prove that
p
2 is irrational.

Proof: (by contradiction)

Suppose
p
2 is rational.

)
p
2 =

p

q
, p, q 2 Z +, q 6= 0 and p, q have no common

factors besides 1.

) p = q
p
2

) p2 = 2q2 .... (¤ )

) p2 is even fq2 2 Z +g
) p is even ffrom (1)g
) p = 2t, for some t 2 Z +

) 4t2 = 2q2 fin ¤g
) q2 = 2t2

) q2 is even

) q is even ffrom (1)g
On the supposition we have shown that both p and q are even

and ) share a common factor of 2, a contradiction.

)
p
2 is irrational.

2 (1) First we prove that

‘if p2 has a factor of 5, then p has a factor of 5 for all

p 2 Z + ’.
Proof:
For every p 2 Z+,

p = 5t, 5t§ 1, or 5t§ 2, t 2 Z +

) p2 = 25t2, 25t2 § 10t+ 1, or 25t2 § 20t+ 4

) p2 = 5(5t2), 5(5t2 § 2t) + 1, or 5(5t2 § 4t) + 4

where only p2 = 5(5t2) has 5 as a factor

) if p2 has a factor 5, then p has a factor of 5.

(2) Now we prove that
p
5 is irrational.

Proof: (by contradiction)

Suppose
p
5 is rational.

)
p
5 =

p

q
; p, q 2 Z +, q 6= 0 and p and q have no

common factors besides 1.

) p = q
p
5

) p2 = 5q2 .... (¤ )

) p2 has a factor of 5
) p has a factor of 5 ffrom (1)g
) p = 5t for some t 2 Z +

) 25t2 = 5q2 fin ¤g
) q2 = 5t2

) q2 has a factor of 5
) q has a factor of 5 ffrom (1)g
) both p and q have a common factor of 5, which is a

contradiction.

)
p
5 is irrational.

3 If p2 has a factor of 4 then it does not follow that p has a factor

of 4.

For example, 62 = 36 has a factor of 4 but 6 does not.

4 2
1

4 is irrational.

Proof: (by contradiction)

Let 2
1

4 =
p

q
where p, q 2 Z +, q 6= 0 and p, q have no

common factors besides 1.

)
p4

q4
= 2

) p4 = 2q4 .... (¤ )

) p4 is even

) p2 is even fa2 even ) a even, from 1g
) p is even

) p = 2t for some t 2 Z +

) 16t4 = 2q4 fin ¤g
) q4 = 8t4

) q4 is even

) q2 even

) q is even

) both p, q are even and ) have a common factor of 2,

which is a contradiction.

) 2
1

4 is irrational.

EXERCISE 1D.1

1 a i a j b ) b = ka for some k 2 Z

) bc = kac

) a j bc fas kc 2 Z g
ii a j b and a j c

) b = k1a and c = k2a for k1, k2 2 Z

) bc = k1k2a2

) a2 j bc fas k1k2 2 Z g
iii a j b and c j d

) b = k1a and d = k2c for k1, k2 2 Z
) bd = k1k2ac
) ac j bd fas k1k2 2 Z g

iv a j b
) b = ka for some k 2 Z
) bn = knan

) an j bn fas kn 2 Z g
b The converse is true.

Proof: an j bn
) bn = kan for k 2 Z

) k =

³
b

a

´n

, which is only an integer if
b

a
is

an integer

) a j b
2 For k 2 Z , k must have one of the forms 3a, 3a+1, 3a+2,

a 2 Z .
k k + 2 k + 4

3a 3a+ 2 3a+ 4

3a+ 1 3a+ 3 3a+ 5

3a+ 2 3a+ 4 3a+ 6

So, for each value of k, one of k, k+2, k+4 is divisible by 3.

3 The statement is false. A counter example is:

8 j (13 + 3), but 8 j= 13 and 8 j= 3.

4 a No integer solutions exist for 24x+ 18y = 9 as

gcd(24, 18) = 6 and 9 is not a multiple of 6.

or LHS is even and RHS is odd.
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WORKED SOLUTIONS 185

b Integer solutions exist for 2x+ 3y = 67 as

gcd(2, 3) = 1 and 67 is a multiple of 1.

x0 = 32, y0 = 1 is one solution.

Since 3
1
= 3 and 2

1
= 2, the solutions are

x = 32 + 3t, y = 1¡ 2t for t 2 Z .

Check: 2x+ 3y = 2(32 + 3t) + 3(1¡ 2t)

= 64 + 6t+ 3¡ 6t

= 67 X

c Integer solutions exist for 57x+ 95y = 19 as

gcd(57, 95) = 19 and 19 is a multiple of 19.

x0 = ¡3, y0 = 2 is one solution.

Since 95
19

= 5 and 57
19

= 3, the solutions are

x = ¡3 + 5t, y = 2¡ 3t for t 2 Z .

d 5 1035
3 207

3 69

23 23

1

5 585
3 117

3 39

13 13

1

) gcd(1035, 585) = 5£ 32 = 45
So, no integer solutions exist for 1035x+ 585y = 901 as

901 is not a multiple of 45.

e Integer solutions exist for 45x¡ 81y = 108 as

gcd(45, 81) = 9 and 108 is a multiple of 9.

x0 = 6, y0 = 2 is one solution.

Since ¡ 81
9

= ¡9 and 45
9

= 5, the solutions are

x = 6¡ 9t, y = 2¡ 5t for t 2 Z fb = ¡81g

5 a i Any integer n must be of the form 3a, 3a + 1, or

3a+ 2.

n n+ 1 n+ 2

3a 3a+ 1 3a+ 2

3a+ 1 3a+ 2 3a+ 3

3a+ 2 3a+ 3 3a+ 4

Each time one of the factors is divisible by 3
) n(n+ 1)(n+ 2) is divisible by 3.

ii In any set of 3 consecutive integers at least one of them is

even (divisible by 2), and from i the product is divisible

by 3. Since gcd(2, 3) = 1, the product is divisible by

2£ 3 = 6.

iii In any set of 4 consecutive integers one of them must be

divisible by 2 and another by 4
) their product is divisible by 8.

iv In any set of 4 consecutive integers at least one of them

is divisible by 3, so the product is divisible by 3.

From iii, the product is also divisible by 8.

Since gcd(3, 8) = 1, the product of the four consecutive

integers is divisible by 3£ 8 = 24.

b Let x+1, x+2, x+3, ...., x+n be the n consecutive

integers, x 2 N .

Now their product is

(x+ 1)(x+ 2)(x+ 3)::::(x+ n)

=
(x + n)!

x!

= n!
(x + n)!

x!n!

= n!£
³
x+ n
x

´
where

³
x+ n
x

´
2 Z fbinomial coefficientg

) the product is divisible by n!

6 For k 2 Z , k must have form 3a, 3a+ 1, or 3a+ 2.

) k(k2 + 8) = 3a(9a2 + 8)

or (3a+ 1)[(3a+ 1)2 + 8]

= (3a+ 1)[9a2 + 6a+ 9]

= 3(3a+ 1)(3a2 + 2a+ 3)

or (3a+ 2)[(3a+ 2)2 + 8]

= (3a+ 2)[9a2 + 12a+ 12]

= 3(3a+ 2)(3a2 + 4a+ 4)

In each case 3 j k(k2 + 8).

7 a 1£ 2£ 3£ 4 = 24 = 52 ¡ 1 X

2£ 3£ 4£ 5 = 120 = 112 ¡ 1 X

3£ 4£ 5£ 6 = 360 = 192 ¡ 1 X

b Let the integers be n¡ 1, n, n+ 1, n+ 2.

) their product

= (n¡ 1)n(n+ 1)(n+ 2)

= (n2 + n)(n2 + n¡ 2)

= (n2 + n¡ 1 + 1)(n2 + n¡ 1¡ 1)

= (n2 + n¡ 1)2 ¡ 1

where (n2 + n¡ 1)2 is a perfect square

) Heta’s claim is valid.

8 a Let gcd(a, a+ n) = d

) d j a and d j a+ n

) d j (a+ n)¡ a flinearity propertyg
) d j n
) gcd(a, a+ n) j n.

b If n = 1, gcd(a, a+ 1) j 1 ffrom ag
) gcd(a, a+ 1) = 1

fsince gcd(a, a+ 1) > 1g
9 Theorem to use: gcd(a, b) = gcd(a+ cb, b), a, b, c 2 Z .

a gcd(3k + 1, 13k + 4)

= gcd(13k + 4, 3k + 1)

= gcd(13k + 4¡ 4(3k + 1), 3k + 1)

= gcd(k, 3k + 1)

= gcd(3k + 1, k)

= gcd(3k + 1¡ 3k, k)

= gcd(1, k)

= 1

b gcd(5k + 2, 7k + 3)

= gcd(7k + 3, 5k + 2)

= gcd(7k + 3¡ (5k + 2), 5k + 2)

= gcd(2k + 1, 5k + 2)

= gcd(5k + 2, 2k + 1)

= gcd(5k + 2¡ 2(2k + 1), 2k + 1)

= gcd(k, 2k + 1)

= gcd(2k + 1, k)

= gcd(2k + 1¡ 2k, k)

= gcd(1, k)

= 1
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186 WORKED SOLUTIONS

10 a Let d = gcd(4a¡ 3b, 8a¡ 5b)

= gcd(8a¡ 5b, 4a¡ 3b)

= gcd(8a¡ 5b¡ 2(4a¡ 3b), 4a¡ 3b)

= gcd(b, 4a¡ 3b)

= gcd(4a¡ 3b, b)

= gcd(4a¡ 3b+ 3b, b)

= gcd(4a, b)

) d j b and d j 4a
) d divides b, but d j a is not necessarily true.

b In a, if b = ¡1, d = gcd(4a+ 3, 8a+ 5)

) d j ¡1

) d = 1 fas d > 0g
) gcd(4a+ 3, 8a+ 5) = 1.

11 gcd(a, b) = 1

) x, y 2 Z exist such that ax+ by = 1.

But c j a
) a = kc where k 2 Z .

Thus kcx+ by = 1

) c(kx) + by = 1 for integers kx, y 2 Z

) gcd(c, b) = 1

fgcd(c, b) is the least positive integer which can be expressed

as an integer linear combination of c and b.g
12 If gcd(a, b) = 1, there exist x, y 2 Z such that

ax+ by = 1 .... (1)

) (ax+ by)2 = 1

) a2x2 + 2abxy + b2y2 = 1

) a2x2 + (2axy + by2)b = 1

and (ax2 + 2bxy)a+ b2y2 = 1

) gcd(a2, b) = 1 and gcd(a, b2) = 1

To prove gcd(a2, b2) = 1

Proof:

gcd(a2, b) = 1 ) a2p1 + bp2 = 1 .... (2)

gcd(a, b2) = 1 ) aq1 + b2q2 = 1 .... (3)

where p1, p2, q1, q2 2 Z .

But as ax+ by = 1, ffrom (1)g
then a2bx+ ab2y = ab .... (4)

From (2), a3p1 + abp2 = a

Hence a3p1 + (a2bx+ ab2y)p2 = a fusing (4)g
and in (3), (a3p1 + a2bp2x+ ab2p2y)q1 + b2q2 = 1

) a2[ap1q1 + bp2q1x] + b2[ap2q1y + q2] = 1

where ap1q1 + bp2q1x, ap2q1y + q2 2 Z

) gcd(a2, b2) = 1

13 Proof: (by contradiction)

Suppose
p
3 is rational

)
p
3 =

p

q
where p, q 2 Z +, gcd(p, q) = 1

) rp+ sq = 1 for some r, s 2 Z +

Hence
p
3 =

p
3(rp+ sq)

)
p
3 = (

p
3p)r + (

p
3q)s

)
p
3 = (

p
3
p
3q)r +

p
3

³
pp
3

´
s

)
p
3 = 3qr + ps

)
p
3 is an integer fas p, q, r, s 2 Z g

which is a contradiction. Hence
p
3 is irrational.

14 a Using the given identity with x = 2, we have:

2k ¡ 1 = 2k¡1 + 2k¡2 + 2k¡3 + ::::+ 22 + 2 + 1

= 1111::::11| {z }
k of them

2

= kth repunit in base 2

So, d j n ) dth repunit j nth repunit fin base 2g
) (2d ¡ 1) j (2n ¡ 1)

b 5 j 35 ) (25 ¡ 1) j (235 ¡ 1)

) 31 j (235 ¡ 1)

and 7 j 35 ) (27 ¡ 1) j (235 ¡ 1)

) 127 j (235 ¡ 1)

So, 235 ¡ 1 is divisible by 31 and 127.

15 gcd(3k + 2, 5k + 3)

= gcd(5k + 3, 3k + 2)

= gcd(5k + 3¡ (3k + 2), 3k + 2)

= gcd(2k + 1, 3k + 2)

= gcd(3k + 2, 2k + 1)

= gcd(3k + 2¡ (2k + 1), 2k + 1)

= gcd(k + 1, 2k + 1)

= gcd(2k + 1, k + 1)

= gcd(2k + 1¡ (k + 1), k + 1)

= gcd(k, k + 1)

= 1 ffrom 8 bg
) 3k + 2 and 5k + 3 are relatively prime.

16 gcd(11k + 7, 5k + 3)

= gcd(11k + 7¡ 2(5k + 3), 5k + 3)

= gcd(k + 1, 5k + 3)

= gcd(5k + 3, k + 1)

= gcd(5k + 3¡ 4(k + 1), k + 1)

= gcd(k ¡ 1, k + 1)

= gcd(k + 1, k ¡ 1)

= gcd(k + 1¡ (k ¡ 1), k ¡ 1)

= gcd(2, k ¡ 1)

=

n
1 if k is even

2 if k is odd

) 5k + 3 and 11k + 7 are relatively prime if k 2 Z + is

even.

17 Let d = gcd(a+ b, a¡ b)

) d = gcd(a+ b¡ (a¡ b), a¡ b)

) d = gcd(2b, a¡ b)

) d j (2b) .... (1)

Also d = gcd(a+ b+ (a¡ b), a¡ b)

) d = gcd(2a, a¡ b)

) d j (2a) .... (2)

But gcd(a, b) = 1 and so gcd(2a, 2b) = 2

) from (1) and (2), d j 2
) d = 1 or 2

) gcd(a+ b, a¡ b) = 1 or 2.

EXERCISE 1D.2

1 a 803 = 154(5) + 33

154 = 33(4) + 22

33 = 22(1) + 11

22 = 11(2) + 0
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WORKED SOLUTIONS 187

) gcd(803, 154) = 11

and 11 = 33¡ 22

= 33¡ (154¡ 33(4))

= 33£ 5¡ 154

= (803¡ 154(5))£ 5¡ 154

= 5£ 803¡ 26£ 154

) 11 = r(803) + s(154) where r = 5, s = ¡26.

b 12 378 = 3054(4) + 162

3054 = 162(18) + 138

162 = 138(1) + 24

138 = 24(5) + 18

24 = 18(1) + 6

18 = 6(3) + 0

) gcd(12 378, 3054) = 6

and 6 = 24¡ 18

= 24¡ (138¡ 24(5))

= 24£ 6¡ 138

= (162¡ 138)£ 6¡ 138

= 6£ 162¡ 7£ 138

= 6£ 162¡ 7(3054¡ 162(18))

= 132£ 162¡ 7£ 3054

= 132(12 378¡ 3054(4))¡ 7£ 3054

= 132

r

£ 12 378¡ 535| {z}
s

£ 3054

c 3172 = 793(4) + 0

) gcd(3174, 793) = 793
and 793 = 0

r

£ 3174 + 1

s

£ 793

d 1265 = 805(1) + 460

805 = 460(1) + 345

460 = 345(1) + 115

345 = 115(3) + 0

) gcd(1265, 805) = 115

and 115 = 460¡ 345

= 460¡ (805¡ 460)

= 460£ 2¡ 805

= (1265¡ 805)£ 2¡ 805

= 2

r

£ 1265 ¡ 3|{z}
s

£ 805

e 55 = 34(1) + 21

34 = 21(1) + 13

21 = 13(1) + 8

13 = 8(1) + 5

8 = 5(1) + 3

5 = 3(1) + 2

3 = 2(1) + 1

2 = 1(2) + 0

) gcd(55, 34) = 1

and 1 = 3¡ 2

= 3¡ (5¡ 3)

= 3£ 2¡ 5

= (8¡ 5)£ 2¡ 5

= 2£ 8¡ 3£ 5

= 2£ 8¡ 3(13¡ 8)

= 5£ 8¡ 3£ 13

= 5(21¡ 13)¡ 3£ 13

= 5£ 21¡ 8£ 13

= 5£ 21¡ 8(34¡ 21)

= 13£ 21¡ 8£ 34

= 13(55¡ 34)¡ 8£ 34

= 13

r

£ 55 ¡ 21|{z}
s

£ 34

2 a gcd(fn+1, fn)

= gcd(fn+1 ¡ fn, fn) ftheoremg
= gcd(fn¡1, fn)

=
.
.
.

gcd(fn, fn¡1)

=
.
.
.

gcd(fn¡1, fn¡2)

= gcd(f2, f1)

= gcd(1, 1)

= 1

b i gcd(f8, f4) = gcd(21, 3) = 3

gcd(f12, f8) = gcd(144, 21) = 3

gcd(f16, f12) = gcd(987, 144) = 3

gcd(f20, f16) = gcd(6765, 987) = 3

ii The results of i suggest that gcd(f4(n+1), f4n) = 3

for all n 2 Z +.
Proof:

f4(n+1)

= f4n+4

= f4n+3 + f4n+2

= f4n+2 + f4n+1 + f4n+2

= 2f4n+2 + f4n+1

= 2(f4n+1 + f4n) + f4n+1

= 3f4n+1 + 2f4n .... (1)

So, if 3 j f4n then 3 j f4(n+1).

But 3 j f4 ff4 = 3g
) 3 j f8
) 3 j f12

.

.

. etc.

) 3 j f4n .... (2)

Now gcd(f4(n+1), f4n)

= gcd(3f4n+1 + 2f4n, f4n) fusing (1)g
= gcd(3f4n+1 + 2f4n ¡ 2f4n, f4n)

= gcd(3f4n+1, f4n)

= 3 ffrom (2), and gcd(f4n+1, f4n) = 1g
c gcd(f10, f5) = gcd(55, 5) = 5

gcd(f15, f10) = gcd(610, 55) = 5

gcd(f20, f15) = gcd(6765, 610) = 5

suggesting that gcd(f5(n+1), f5n) = 5 for all n 2 Z+.
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188 WORKED SOLUTIONS

Proof:

f5(n+1)

= f5n+5

= f5n+4 + f5n+3

= 2f5n+3 + f5n+2

= 2(f5n+2 + f5n+1) + f5n+2

= 3f5n+2 + 2f5n+1

= 3(f5n+1 + f5n) + 2f5n+1

= 5f5n+1 + 3f5n .... (1)

So, if 5 j f5n then 5 j f5(n+1).

But 5 j f5 ff5 = 5g
) 5 j f10
) 5 j

.

.

.

f15

) 5 j f5n .... (2)

Now gcd(f5(n+1), f5n)

= gcd(5f5n+1 + 3f5n, f5n) fusing (1)g
= gcd(5f5n+1 + 3f5n ¡ 3f5n, f5n)

= gcd(5f5n+1, f5n)

= 5 ffrom (2), and gcd(f5n+1, f5n) = 1g

3 a 227 = 143(1) + 84

143 = 84(1) + 59

84 = 59(1) + 25

59 = 25(2) + 9

25 = 9(2) + 7

9 = 7(1) + 2

7 = 2(3) + 1

2 = 1(2) + 0

) gcd(227, 143) = 1

Now lcm£ gcd = 227£ 143

) lcm = 32 461

b 1749 = 272(6) + 117

272 = 117(2) + 38

117 = 38(3) + 3

38 = 3(12) + 2

3 = 2(1) + 1

2 = 1(2) + 0

) gcd(1749, 272) = 1

Now lcm£ gcd = 1749£ 272

) lcm = 475 728

c From 1 b, gcd(3054, 12 378) = 6

Now lcm£ gcd = 3054£ 12 378

) lcm =
3054 £ 12 378

6
) lcm = 6300 402

d 1121 = 267(4) + 53

267 = 53(5) + 2

53 = 2(26) + 1

2 = 1(2) + 0 ) gcd(1121; 267) = 1

Now lcm£ gcd = 1121£ 267

) lcm = 299 307

4 To prove: lcm(a, b) = ab , gcd(a, b) = 1

Proof:

() ) gcd(a, b)£ lcm(a, b) = ab ftheoremg
) gcd(a, b)£ ab = ab flcm(a, b) = abg
) gcd(a, b) = 1 fa, b 6= 0g

(( ) gcd(a, b)£ lcm(a, b) = ab

) 1£ lcm(a, b) = ab fgcd(a, b) = 1g
) lcm(a, b) = ab

EXERCISE 1D.3

1 a gcd(6, 51) = 3 and 3 j= 22
) no integer solutions exist.

b gcd(33, 14) = 1 and 1 j 115
) integer solutions exist.

Now 33 = 14(2) + 5

14 = 5(2) + 4

5 = 4(1) + 1

4 = 1(4) + 0

thus 1 = 5¡ 4

= 5¡ (14¡ 5(2))

= 3£ 5¡ 14

= 3(33¡ 14(2))¡ 14

= 3£ 33¡ 7£ 14

) 115 = 345£ 33¡ 805£ 14

) x0 = 345, y0 = ¡805 is one solution

) solutions are x = x0 + t( 14
1
), y = y0 ¡ t( 33

1
)

) x = 345 + 14t, y = ¡805¡ 33t, t 2 Z .

Check: 33(345 + 14t) + 14(¡805¡ 33t)

= 11 385 + 462t¡ 11 270¡ 462t

= 115 X

c gcd(14, 35) = 7 and 7 j= 93
) no integer solutions exist.

d gcd(72, 56) = 8 and 8 j 40
) integer solutions exist.

Now 72 = 56(1) + 16

56 = 16(3) + 8

16 = 8(2) + 0

thus 8 = 56¡ 16(3)

= 56¡ (72¡ 56)£ 3

= ¡3£ 72 + 4£ 56

) 40 = ¡15£ 72 + 20£ 56

) x0 = ¡15, y0 = 20 is one solution

) solutions are x = ¡15 + t( 56
8
), y = 20¡ t( 72

8
)

) x = ¡15 + 7t, y = 20¡ 9t, t 2 Z .

Check: 72x+ 56y

= 72(¡15 + 7t) + 56(20¡ 9t)

= ¡1080 + 504t+ 1120¡ 504t

= 40 X

e gcd(138, 24) = 6 and 6 j 18
) integer solutions exist.

Now 138 = 24(5) + 18

24 = 18(1) + 6

18 = 6(3) + 0

thus 6 = 24¡ 18

= 24¡ (138¡ 24(5))

= ¡1£ 138 + 6£ 24
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WORKED SOLUTIONS 189

) 18 = ¡3£ 138 + 18£ 24
) x0 = ¡3, y0 = 18 is one solution

) solutions are x = ¡3 + t( 24
6
), y = 18¡ t( 138

6
)

) x = ¡3 + 4t, y = 18¡ 23t, t 2 Z .

f gcd(221, 35) = 1 and 1 j 11
) integer solutions exist.

Now 221 = 35(6) + 11

35 = 11(3) + 2

11 = 2(5) + 1

2 = 1(2) + 0

Thus 1 = 11¡ 2(5)

= 11¡ (35¡ 11(3))£ 5

= ¡5£ 35 + 16£ 11

= ¡5£ 35 + 16(221¡ 35(6))

= 16£ 221¡ 101£ 35

) 11 = 176£ 221¡ 1111£ 35

) x0 = 176, y0 = ¡1111 is one solution.
) solutions are

x = 176 + t( 35
1
), y = ¡1111¡ t( 221

1
)

) x = 176 + 35t, y = ¡1111¡ 221t, t 2 Z .

2 a 18x+ 5y = 48
gcd(18, 5) = 1 and 1 j 48
) integer solutions exist.

Now 18 = 5(3) + 3

5 = 3(1) + 2

3 = 2(1) + 1

2 = 1(2) + 0

Thus 1 = 3¡ 2

= 3¡ (5¡ 3)

= ¡5 + 2£ 3

= ¡5 + 2(18¡ 5(3))

= 2£ 18¡ 7£ 5

) 48 = 96£ 18¡ 336£ 5

) x0 = 96, y0 = ¡336 is one solution.
) solutions are x = 96 + 5t, y = ¡336¡ 18t, t 2 Z .
For positive solutions we require

96 + 5t > 0 and ¡336¡ 18t > 0

) 5t > ¡96 and 18t < ¡336

) t > ¡19:2 and t < ¡18:6

) t = ¡19
where x = 96 + 5(¡19) = 1

and y = ¡336¡ 18(¡19) = 6

) x = 1, y = 6 is the only positive integer solution pair.

b 54x+ 21y = 906
gcd(54, 21) = 3 and 3 j 906
) integer solutions exist.

Now 54 = 21(2) + 12

21 = 12(1) + 9

12 = 9(1) + 3

9 = 3(3) + 0

Thus 3 = 12¡ 9

= 12¡ (21¡ 12)

= ¡21 + 2£ 12

= ¡21 + 2(54¡ 21(2))

= 2£ 54¡ 5£ 21

) 906 = 604£ 54¡ 1510£ 21

) x0 = 604, y0 = ¡1510 is one solution.
) solutions are

x = 604 + t( 21
3
), y = ¡1510¡ t( 54

3
)

) x = 604 + 7t, y = ¡1510¡ 18t, t 2 Z .

For positive solutions we require

604 + 7t > 0 and ¡1510¡ 18t > 0

) 7t > ¡604 and 18t < ¡1510

) t > ¡86:3 and t < ¡83:9

) t = ¡84, ¡85, or ¡86
) positive integer solutions are:

x 2 9 16

y 38 20 2

c 123x+ 360y = 99
gcd(123, 360) = 3 and 3 j 99
) integer solutions exist.

Now 360 = 123(2) + 114

123 = 114(1) + 9

114 = 9(12) + 6

9 = 6(1) + 3

6 = 3(2) + 0

Thus 3 = 9¡ 6

= 9¡ (114¡ 9(12))

= ¡114 + 13£ 9

= ¡114 + 13(123¡ 114)

= 13£ 123¡ 14£ 114

= 13£ 123¡ 14(360¡ 123(2))

= 41£ 123¡ 14£ 360

) 99 = 1353£ 123¡ 462£ 360

) x0 = 1353, y0 = ¡462 is one solution.
) solutions are

x = 1353 + ( 360
3

)t, y = ¡462¡ ( 123
3

)t

) x = 1353 + 120t, y = ¡462¡ 41t, t 2 Z .

For positive solutions we require

1353 + 120t > 0 and ¡462¡ 41t > 0

) 120t > ¡1353 and 41t < ¡462

) t > ¡11:275 and t < ¡11:268

) no integer t exists.

) 123x+ 360y = 99 has no positive integer solutions.

d 158x¡ 57y = 11 or 158x+ 57(¡y) = 11

gcd(158, 57) = 1 and 1 j 11
) integer solutions exist.

Now 158 = 57(2) + 44

57 = 44(1) + 13

44 = 13(3) + 5

13 = 5(2) + 3

5 = 3(1) + 2

3 = 2(1) + 1

2 = 1(2) + 0

Thus 1 = 3¡ 2

= 3¡ (5¡ 3)

= ¡5 + 2£ 3

= ¡5 + 2(13¡ 5(2))

= 2£ 13¡ 5£ 5

= 2£ 13¡ 5(44¡ 13(3))

= ¡5£ 44 + 17£ 13

= ¡5£ 44 + 17(57¡ 44)
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190 WORKED SOLUTIONS

= 17£ 57¡ 22£ 44

= 17£ 57¡ 22(158¡ 57(2))

= ¡22£ 158 + 61£ 57

) 11 = ¡242£ 158 + 671£ 57

) x0 = ¡242, ¡y0 = 671 is one solution.

) solutions are x = ¡242 + ( 57
1
)t, ¡y = 671¡ ( 158

1
)t

) x = ¡242 + 57t, y = ¡671 + 158t

For positive solutions we require

¡242 + 57t > 0 and ¡671 + 158t > 0

) t > 4:245:::: and t > 4:246::::

) t > 5

Thus, there are infinitely many positive integer solutions.

These are:
x = ¡242 + 57t, y = ¡671 + 158t, t > 5, t 2 Z .

3 7 j a and 11 j b
) a = 7x and b = 11y for x, y 2 Z +

) 7x+ 11y = 100 for x, y 2 Z +

gcd(7, 11) = 1 and 1 j 100
) integer solutions exist.

Now 11 = 7(1) + 4

7 = 4(1) + 3

4 = 3(1) + 1

3 = 1(3) + 0

Thus 1 = 4¡ 3

= 4¡ (7¡ 4)

= ¡7 + 2£ 4

= ¡7 + 2(11¡ 7)

= 2£ 11¡ 3£ 7

) 100 = 200£ 11¡ 300£ 7

= ¡300£ 7 + 200£ 11

) x0 = ¡300, y0 = 200 is one solution.

) solutions are x = ¡300 + 11t, y = 200¡ 7t, t 2 Z .

For positive solutions we require

¡300 + 11t > 0 and 200¡ 7t > 0

) 11t > 300 and 7t < 200

) t > 27:27 and t < 28:57

) t = 28

Hence, x = 8, y = 4

) the numbers are 56 and 44.

4 Let m = number of men

w = number of women

c = number of children

) m+ w + c = 20 ftotal number presentg
and 5m+ 4w + 2c = 62

Thus 5m+ 4w + 2(20¡m¡ w) = 62

) 5m+ 4w + 40¡ 2m¡ 2w = 62

) 3m+ 2w = 22

By inspection, one solution is m0 = 0, w0 = 11.

) m = 2t and w = 11¡ 3t, t 2 Z is the general solution.

) c = 20¡m¡w

= 20¡ 2t¡ 11 + 3t

= 9 + t, t 2 Z

But m > 0, w > 0, c > 0

) 2t > 0, 11¡ 3t > 0, 9 + t > 0

) t > 0, t < 3 2
3

, t > ¡9

) t = 1, 2, or 3

So, the possible solutions are:

m 2 4 6

w 8 5 2

c 10 11 12

Check: 5m+ 4w + 2c

= 5(2) + 4(8) + 2(10) = 62 X

or 5(4) + 4(5) + 2(11) = 62 X

or 5(6) + 4(2) + 2(12) = 62 X

5 Let c = number of cats bought

r = number of rabbits bought

f = number of fish bought

) c+ r + f = 100

and 50c+ 10r + 0:5f = 1000

) 50c+ 10r + 0:5(100¡ c¡ r) = 1000

) 50c+ 10r + 50¡ 1
2
c¡ 1

2
r = 1000

) 49 1
2
c+ 9 1

2
r = 950

) 99c+ 19r = 1900

By inspection, one solution is c0 = 0, r0 = 100.

) c = 19t, r = 100¡ 99t, t 2 Z is the general solution.

) f = 100¡ 19t¡ (100¡ 99t)

= 80t, t 2 Z

But c > 1, r > 1, f > 1

) 19t > 1, 100¡ 99t > 1, 80t > 1

) t > 1
19

, t 6 1, t > 1
80

) t = 1

Thus c = 19, r = 1, f = 80

) I buy 19 cats, 1 rabbit, and 80 fish.

6

Let Smith travel for x hours and Jones for y hours; x, y 2 Z +

) Smith travels 55x km, and Jones 60y km.

Thus 55x+ 60y = 450

) 11x+ 12y = 90

where gcd(11, 12) = 1 and 1 j 90.

) integer solutions exist.

Now 12 = 11(1) + 1

) 1 = 12¡ 11

) 90 = 90£ 12¡ 90£ 11

) one solution is x0 = ¡90, y0 = 90

) solutions are x = ¡90 + 12t, y = 90¡ 11t, t 2 Z .

For positive solutions,

¡90 + 12t > 0 and 90¡ 11t > 0

) 12t > 90 and 11t < 90

) t > 7:5 and t < 8:18::::

) t = 8

Thus x = 6, y = 2

) Smith travels for 6 hours, Jones for 2 hours

) they meet 330 km from A (or 120 km from B).

450 km

Smith kmph55

Jones kmph60

A M
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WORKED SOLUTIONS 191

7 x = number bought at $3:50

y = number bought at $4¥ 3

z = number bought at $0:50

) x+ y + z = 100 and

3 1
2
x+ 4

3
y + 1

2
z = 100

) x+ y + z = 100 and

21x+ 8y + 3z = 600

) ¡3x¡ 3y ¡ 3z = ¡300 and

21x+ 8y + 3z = 600

18x+ 5y = 300

By inspection, one solution is x0 = 0, y0 = 60.

) x = 5t, y = 60¡ 18t, t 2 Z is the general solution.

) z = 100¡ 5t¡ (60¡ 18t)

= 40 + 13t

For positive solutions

5t > 0 and 60¡ 18t > 0 and 40 + 13t > 0

) t > 0 and 18t < 60 and 13t > ¡40

) t > 0 and t < 3 1
3

and t > ¡3:08

) t = 1, 2, or 3

So the possible

solutions are:

x 5 10 15

y 42 24 6

z 53 66 79

EXERCISE 1E

1 a 143 = 13£ 11 and so 143 is not a prime.

b 221 = 13£ 17 and so 221 is not a prime.

c 199 is a prime as 2, 3, 5, 7, 11, and 13 are not factors

of 199.

fp199 ¼ 14:1, so we need only check for divisibility by

primes less than 14:1g
d 223 is a prime as

p
223 ¼ 14:9 and 2, 3, 5, 7, 11, and 13

are not factors of 223.

2 Any even number greater than 2 is composite, as it has a factor

other than itself and 1 (namely, 2).

So, 2 is the only even prime.

3 a 11 is prime.

b 111 = 3£ 37 is not prime.

c 1111 = 11£ 101 is not prime.

d 11 111 = 41£ 271 is not prime.

4 If p j q then q = kp for some k 2 Z .

If k 6= 1, q is composite, a contradiction to q being a prime.

Thus k = 1

) p = q

5 a i Suppose the powers in the factorisation of n are even

, n = p 2a1

1 p 2a2

2 p 2a3

3 ::::p
2ak

k

, n =
¡
p a1

1 p a2

2 p a3

3 ::::p
ak

k

¢2
, n is a square number.

ii The power of a prime, pn has n+ 1 factors.

These are 1, p, p2, p3, ...., pn

) by the product principle of counting

n = p n1

1 p n2

2 p n3

3 ::::p
nk

k
has

(n1 + 1)(n2 + 1)(n3 + 1)::::(nk + 1) factors.

The number of factors of n is odd
, all of the (ni + 1)s are odd

, all of the nis are even

, n is a square. fby ig
b Suppose

p
2 is rational

)
p
2 =

p

q
where gcd(p, q) = 1, q 6= 0

) p2 = 2q2

a contradiction as the number of factors of p2 is odd and the

number of factors of 2q2 is even. ffrom a iig

6 a 1 + a+ a2 + a3 + ::::+ an¡1 =
1(an ¡ 1)

a ¡ 1
, a 6= 1

fsum of a GSg
) an ¡ 1 = (a¡ 1)(1 + a+ a2 + a3 + ::::+ an¡1)
Thus if an ¡ 1 is prime, a¡ 1 = 1

fotherwise it has two factors other than itself and 1g
) a = 2

b No, as for example, 24 ¡ 1

= 15

= 3£ 5

c No, as for example, 23 ¡ 1

= 7 which is not composite.

d No, as for example, 211 ¡ 1

= 2047

= 23£ 89

7 a 5 9555
3 1911

7 637

7 91

13 ) 9555 = 3£ 5£ 72 £ 13

b 23 989
43 ) 989 = 23£ 43

c 3 9999
3 3333

11 1111

101 ) 9999 = 32 £ 11£ 101

d 3 111 111
37 37 037

11 1001

7 91

13 ) 111 111 = 3£ 7£ 11£ 13£ 37

8 a The product of two equal primes, p2 has exactly 3 divisors,

1, p, and p2.

b The product of two distinct primes, pq has exactly 4 divisors,

1, p, q, and pq.

9 a The primes which divide 50! are the primes in the list

1, 2, 3, 4, ...., 49, 50.
These are: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,

43, and 47.

b An end zero results when we have a product 2£ 5. There

is an abundance of factors of 2, so we need only count the

factors of 5 in 50!

5, 10, 15, 20,| {z }
1 each

25,|{z}
2

30, 35, 40, 45,| {z }
1 each

50|{z}
2

) 4 + 2 + 4 + 2 = 12
) 50! ends in 12 zeros.
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192 WORKED SOLUTIONS

c In 1 to 25 there are 6 factors of 5

In 26 to 50 there are 6

In 51 to 75 there are 6

In 76 to 100 there are 6

In 101 to 125 there are 7 f125 has 3 factors of 5g
31

In 126 to 250 there are 31

62

In 251 to 300 there are 12

74

) we have 74 ending zeros for

300!, 301!, 302!, 303!, 304!

10 a By the Fundamental Theorem of Arithmetic,

a = p a1

1 p a2

2 p a3

3 ::::p
ak

k

) an = p na1

1 p na2

2 p na3

3 ::::p
nak

k

So, if p j an, then p is one of the pi (i = 1, 2, 3, ...., k)

) pn j an
b a = p a1

1 p a2

2 p a3

3 ::::p
ak

k

fFundamental Theorem of Arithmeticg
) a2 = p 2a1

1 p 2a2

2 p 2a3

3 ::::p
2ak

k

So, if p j a2, then p is one of the pi
) p j a

c a = p a1

1 p a2

2 p a3

3 ::::p
ak

k

) an = p na1

1 p na2

2 p na3

3 ::::p
nak

k

So, if p j an, then p is one of the pi
) p j a

11 a All integers have form 4n, 4n + 1, 4n + 2, or 4n + 3

where 4n and 4n+ 2 are composites (they are even).

) all odd primes must have form 4n+ 1 or 4n+ 3.

b Suppose there are a finite number of primes of the form

4n + 3 and these are p1, p2, p3, p4, ...., pk where

p1 < p2 < p3 < p4 < :::: < pk .

Now consider N = 4(p1p2p3::::pk) + 3 which is of the

form 4n+ 3.
If N is a prime number, then pk is not the largest prime of

the form 4n+ 3.
If N is composite, then it must contain prime factors of the

form 4n+ 1 or 4n+ 3.
But N cannot contain only prime factors of the form 4n+1

since the product of such numbers is not of the form 4n+3.

This is shown by: (4n1 + 1)(4n2 + 1)

= 16n1n2 + 4n1 + 4n2 + 1

= 4(4n1n2 + n1n2) + 1.

Hence, N must contain a prime factor of the form 4n+ 3.

Since p1, p2, p3, ...., pk are not factors of N , there exists

another prime factor of the form 4n+ 3.

This is a contradiction.
So, there are infinitely many primes of the form 4n+ 3.

12 a If n = 1, 22
1

+ 1 = 5, a prime.

If n = 2, 22
2

+ 1 = 24 + 1 = 17, a prime.

If n = 3, 22
3

+ 1 = 28 + 1 = 257, a prime.

If n = 4, 22
4

+ 1 = 216 + 1 = 65 537, a prime.

b If n = 5, 22
5

+ 1 = 4294 967 297

= 641£ 6 700 417

fusing a prime factors calculator via the internetg
) Fermat’s conjecture was incorrect.

EXERCISE 1F.1

1 a, b are congruent (mod 7) , a ´ b (mod 7)

, 7 j a¡ b

a 15¡ 1 = 14 and 7 j 14
) 1, 15 are congruent (mod 7)

b 8¡¡1 = 9 and 7 j= 9
) ¡1, 8 are not congruent (mod 7)

c 99¡ 2 = 97 and 7 j= 97
) 2, 99 are not congruent (mod 7)

d 699¡¡1 = 700 and 7 j 700
) ¡1, 699 are congruent (mod 7)

2 a 29¡ 7 = 22 and 22 has factors 1, 2, 11, 22.
) m = 1, 2, 11, 22.

b 100¡ 1 = 99 and 99 has factors 1, 3, 9, 11, 33, 99.
) m = 1, 3, 9, 11, 33, 99.

c 53¡ 0 = 53 which is a prime with factors 1, 53.

) m = 1, 53.

d 61¡ 1 = 60 which has factors 1, 2, 3, 4, 5, 6, 10, 12, 15,

20, 30, 60.
) m = 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60.

3 a 228 = (23)9 £ 2

´ 1£ 2 (mod 7) f23 = 8 ´ 1g
´ 2 (mod 7)

b 10 ´ 3 (mod 7) f10¡ 3 = 7 = 1£ 7g
) 1033 ´ 333 (mod 7)

´ (33)11 (mod7)

´ (¡1)11 (mod 7) f33 = 27 ´ ¡1g
´ ¡1 (mod 7)

´ 6 (mod 7)

c 350 = (33)1632

´ (¡1)16 £ 2 (mod 7) f33 = 27 ´ ¡1g
´ 2 (mod 7)

d 41 ´ ¡1 (mod 7) f41¡¡1 = 42 = 6£ 7g
) 4123 ´ (¡1)23 (mod 7)

´ ¡1 (mod 7)

´ 6 (mod 7)

4 a 228 = (25)5 £ 23

´ (¡5)5 £ 8 (mod 37) f25 = 32 ´ ¡5g
´ (¡5)2 £ (¡5)2 £ (¡5)£ 8 (mod 37)

´ ¡12£¡12£¡40 (mod 37)

f(¡5)2 = 25 ´ ¡12g
´ ¡12£¡12£¡3 (mod 37)

´ ¡12£ 36 (mod 37)

´ ¡12£¡1 (mod 37)

´ 12 (mod 37)

b 365 = (33)21 £ 32

´ 121 £ 9 (mod 13) f33 = 27 ´ 1g
´ 9 (mod 13)

c 744 = (72)22

´ 522 (mod 11) f72 = 49 ´ 5g
´ (52)11 (mod 11)

´ 311 (mod 11) f52 = 25 ´ 3g
´ (32)5 £ 3 (mod 11)
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WORKED SOLUTIONS 193

´ (¡2)5 £ 3 (mod 11) f32 = 9 ´ ¡2g
´ ¡32£ 3 (mod 11)

´ 1£ 3 (mod 11)

´ 3 (mod 11)

5 a 53 ´ 14 (mod 39) and 103 ´ ¡14 (mod 39)

) 53103 + 10353 (mod 39)

´ 14103 + (¡14)53 (mod 39)

´ 14103 ¡ 1453 (mod 39)

´ 1453(1450 ¡ 1) (mod 39)

´ 1453[(142)25 ¡ 1] (mod 39)

´ 1453[125 ¡ 1] (mod 39) f142 = 196 ´ 1g
´ 0 (mod 39)

Thus 53103 + 10353 is divisible by 39.

b 333 ´ 4 (mod 7) and 111 ´ ¡1 (mod 7)

) 333111 + 111333 (mod 7)

´ 4111 + (¡1)333 (mod 7)

´ [(42)55 £ 4¡ 1] (mod 7)

´ [255 £ 22 ¡ 1] (mod 7) f42 = 16 ´ 2g
´ [257 ¡ 1] (mod 7)

´ [(23)19 ¡ 1] (mod 7)

´ [119 ¡ 1] (mod 7) f23 = 8 ´ 1g
´ 0 (mod 7)

) 333111 ¡ 111333 is divisible by 7.

6 2100 + 3100

= (22)50 + (34)25

´ (¡1)50 + 125 (mod 5) f22 = 4 ´ ¡1; 34 = 81 ´ 1g
´ 1 + 1 (mod 5)

´ 2 (mod 5)

) the remainder when 2100 + 3100 is divided by 5 is 2.

7 203 ´ 3 (mod 100)

) 20320 ´ 320 (mod 100)

´ (34)5 (mod 100)

´ (¡19)5 (mod 100) f34 = 81 ´ ¡19g
´ 361£ 361£¡19 (mod 100)

´ ¡39£¡39£¡19 (mod 100)

´ 1521£¡19 (mod 100)

´ 21£¡19 (mod 100)

´ ¡399 (mod 100)

´ 1 (mod 100)

) last two digits are 01.

8 a 5! = 120 ´ 0 (mod 20)

) k! ´ 0 (mod 20) for all k > 5

)

50P
k=1

k! (mod 20)´ (1! + 2! + 3! + 4!) (mod 20)

´ 1 + 2 + 6 + 24 (mod 20)

´ 33 (mod 20)

´ 13 (mod 20)

b 7! = 5040 ´ 0 (mod 42)

) k! ´ 0 (mod 42) for all k > 7

)

50P
k=1

k! (mod 42)

´ (1! + 2! + 3! + 4! + 5! + 6!) (mod 42)

´ 873 (mod 42)

´ 33 (mod 42)

c 4£ 3 is contained in 10!
) 10! ´ 0 (mod 12)

) k! ´ 0 (mod 12) for all k > 10

)

100P
k=10

k! (mod 12) ´ 0 (mod 12)

d 2£ 5 is contained in 5!
) 5! ´ 0 (mod 10)

) k! ´ 0 (mod 10) for all k > 5.

Now
30P
k=4

k! = 4! +
30P

k=5

k!

´ 24 + 0 (mod 10)

´ 4 (mod 10)

9 a i 510 (mod 11)

´ 255 (mod 11)

´ 35 (mod 11)

´ 1 (mod 11)

ii 312 (mod 13)

´ (33)4 (mod 13)

´ 274 (mod 13)

´ 14 (mod 13)

´ 1 (mod 13)

iii 218 (mod 19)

´ (24)422 (mod 19)

´ 164 £ 4 (mod 19)

´ (¡3)4 £ 4 (mod 19)

´ 81£ 4 (mod 19)

´ 5£ 4 (mod 19)

´ 1 (mod 19)

iv 716 (mod 17)

´ (72)8 (mod 17)

´ 498 (mod 17)

´ (¡2)8 (mod 17)

´ 28 (mod 17)

´ (24)2 (mod 17)

´ 162 (mod 17)

´ (¡1)2 (mod 17)

´ 1 (mod 17)

b Conjecture: (from a)

For a 2 Z , an¡1 ´ 1 (modn). n may have to be prime.

c i 411 (mod 12)

´ (43)3 £ 42 (mod 12)

´ 643 £ 16 (mod 12)

´ 43 £ 4 (mod 12)

´ 4£ 4 (mod 12)

´ 16 (mod 12)

´ 4 (mod 12)

ii 58 (mod 9)

´ (52)4 (mod 9)

´ (¡2)4 (mod 9)

´ 16 (mod 9)

´ 7 (mod 9)

iii 3310 (mod 11)

´ 010 (mod 11)

´ 0 (mod 11)

iv 3416 (mod 17)

´ 016 (mod 17)

´ 0 (mod 17)

d New conjecture: based on c examples.

For a 2 Z , and p a prime, if p j= a then

ap¡1 ´ 1 (mod p).

10 a i 2! (mod 3)

´ 2 (mod 3)

ii 4! (mod 5)

´ 24 (mod 5)

´ 4 (mod 5)

magentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 IB HL OPT

Discrete Mathematics

Y:\HAESE\IB_HL_OPT-DM\IB_HL_OPT-DM_an\193IB_HL_OPT-DM_an.cdr Tuesday, 18 February 2014 12:15:34 PM BRIAN



194 WORKED SOLUTIONS

iii 10! (mod 11)

´ 10£ 9£ 8£ 7£ 6£ 5£ 4£ 3£ 2£ 1 (mod 11)

´ 90£ 56£ 30£ 24 (mod 11)

´ 2£ 1£ 8£ 2 (mod 11)

´ 32 (mod 11)

´ 10 (mod 11)

iv 6! (mod 7)

´ 6£ 5£ 4£ 3£ 2£ 1 (mod 7)

´ 30£ 24 (mod 7)

´ 2£ 3 (mod 7)

´ 6 (mod7)

b Conjecture:

(n¡ 1)! ´ n¡ 1 (modn), n 2 Z +, n > 2.

c i 3! (mod 4)

´ 6 (mod4)

´ 2 (mod4)

6´ 3 (mod4)

ii 5! (mod 6)

´ 120 (mod 6)

´ 0 (mod 6)

6´ 5 (mod 6)

d From c we make a new conjecture:

(p¡ 1)! ´ p¡ 1 (mod p) for any prime p.

11 a 52n + 3£ 25n¡2 (mod 7)

´ 25n + 3£ 32n £ 2¡2 (mod 7)

´ 4n + 3
4
(4n) (mod 7) f25 ´ 4; 32 ´ 4g

´ 4n + 3(4n¡1) (mod 7)

´ 4n¡1(4 + 3) (mod 7)

´ 4n¡1(0) (mod 7)

´ 0 (mod 7)

) 52n + 3£ 25n¡2 is divisible by 7 for all n 2 Z +.

b 3n+2 + 42n+1 (mod 13)

´ 3n+2 + 16n £ 4 (mod 13)

´ 3n+2 + 3n £ 4 (mod 13)

´ 3n(32 + 4) (mod 13)

´ 3n(13) (mod 13)

´ 3n(0) (mod 13)

´ 0 (mod 13)

) 3n+2 + 42n+1 is divisible by 13 for all n 2 Z +.

c 5n+2 + 25n+1 (mod 27)

´ 5n+2 + 32n £ 2 (mod 27)

´ 5n+2 + 5n £ 2 (mod 27)

´ 5n(52 + 2) (mod 27)

´ 5n £ 27 (mod 27)

´ 5n(0) (mod 27)

´ 0 (mod 27)

) 5n+2 + 25n+1 is divisible by 27 for all n 2 Z +.

12 Consider

N = an10n + an¡110n¡1 + ::::+ a2102 + a110 + a0

Now 10 ´ 1 (mod 3)

) 10n ´ 1 (mod 3) for all n 2 Z +

) N ´ an + an¡1 + ::::+ a2 + a1 + a0 (mod 3)

) N is divisible by 3

, an + an¡1 + ::::+ a2 + a1 + a0 is divisible by 3.

13 a Any even integer n leaves a remainder of 0 or 2 when divided

by 4

) n ´ 0 (mod 4) or 2 (mod 4)

) n2 ´ 0 (mod 4) or 4 (mod 4) = 0 (mod 4)

Thus n2 ´ 0 (mod 4).

b Any odd integer leaves a remainder of 1 or 3 when divided

by 4

) n ´ 1 (mod 4) or 3 (mod 4)

) n2 ´ 1 (mod 4) or 9 (mod 4) = 1 (mod 4)

) n2 ´ 1 (mod 4)

c Any integer leaves a remainder of 0, 1, or 2 when divided

by 3

) n ´ 0, 1, or 2 (mod 3)

) n2 ´ 0, 1, or 4 (mod 3)

) n2 ´ 0 or 1 (mod 3)

d Any integer leaves a remainder of 0, 1, 2, 3, 4, 5, 6, 7, or 8

when divided by 9

) n ´ 0, 1, 2, 3, 4, 5, 6, 7, or 8 (mod 9)

) n3 ´ 0, 1, 8, 0, 1, 8, 0, 1, or 8 (mod 9)

) n3 ´ 0, 1, or 8 (mod 9)

14 a Any odd integer has form n = 2k + 1 where k 2 Z .

) n2 = 4k2 + 4k + 1

) n2 = 4k(k + 1) + 1

) n2 = 4(2A) + 1, A 2 Z as k(k + 1) is even

fk, k + 1 are consecutive integers, one of which is eveng
) n2 = 8A+ 1

) n2 ´ 1 (mod 8)

b If n is an even integer then n = 2k where k 2 Z .

) n2 = 4k2 where k could be even or odd

) n2 = 4(2a)2 or 4(2a+ 1)2

) n2 = 4(4a2) or 4(4a2 + 4a+ 1)

) n2 = 8(2a2) or 16a2 + 16a+ 4

) n2 ´ 0 or 4 (mod 8)

Thus, the square of any even integer is congruent to either

0 or 4 (mod 8).

15 a, b, c 2 Z+ such that a ´ b (mod c)

) a¡ b = kc for some integer k

) a = b+ kc

Now gcd(a, c)

= gcd(b+ kc, c)

= gcd(b, c) flinearity property of gcd g
16 a i x2 ´ 1 (mod 3)

Now x ´ 0, 1, 2 (mod3)

) x2 ´ 0, 1, 1 (mod3)

) if x2 ´ 1 (mod 3) then x ´ 1 or 2 (mod 3)

or x2 ´ 1 (mod 3)

, x2 ¡ 1 ´ 0 (mod 3)

, (x+ 1)(x¡ 1) ´ 0 (mod 3)

, x ´ ¡1 or 1 (mod 3)

, x ´ 2 or 1 (mod 3)

ii x2 ´ 4 (mod 7)

, x2 ¡ 4 ´ 0 (mod 7)

, (x+ 2)(x¡ 2) ´ 0 (mod 7)

, x ´ ¡2 or 2 (mod 7)

, x ´ 5 or 2 (mod 7)
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WORKED SOLUTIONS 195

b x2 ´ a2 (mod p)

, x2 ¡ a2 ´ 0 (mod p)

, (x+ a)(x¡ a) ´ 0 (mod p)

, x ´ ¡a or a (mod p)

, x ´ §a (mod p)

17 a
nP

k=1

k = 1 + 2 + 3 + 4 + ::::+ n

=
n(n + 1)

2
where

n + 1

2
2 Z as n is odd

)

nP
k=1

k ´ 0 (modn)

b If n is even,

for n = 2,
2P

k=1

k = 1 + 2 = 3 ´ 1 (mod2)

for n = 4,
4P

k=1

k = 1 + 2 + 3 + 4 = 10 ´ 2 (mod 4)

for n = 6,
6P

k=1

k = 1+2+3+4+5+6 = 21 ´ 3 (mod 6)

These results suggest that

for n even,
nP

k=1

k =
n

2
(modn)

Proof:

As 1 + 2+ 3+ 4+ ::::+ n =
n

2
(n+ 1) then in modn,

n+ 1 ´ 1

)

nP
k=1

k ´ n

2
(modn).

18
n¡1P
k=1

k3 =

h
(n¡ 1)n

2

i2
fusing the hintg

=
(n¡ 1)2n2

4
Now consider n = 4m+ r where r = 0, 1, 2, 3.

If r = 0, n = 4m and
(n ¡ 1)2n2

4
= 4m2(4m¡1)2 which

is divisible by n = 4m.

If r = 1, n = 4m+ 1 and
(n ¡ 1)2n2

4
= 4m2(4m+ 1)2

which is divisible by n = 4m+ 1.

If r = 2, n = 4m+ 2 and

(n¡ 1)2n2

4
=

(4m + 1)2(4m+ 2)2

4

= (4m+ 1)2(2m+ 1)2

which is not divisible by n = 4m+ 2.

If r = 3, n = 4m+ 3 and

(n¡ 1)2n2

4
=

(4m + 2)2(4m+ 3)2

4

= (2m+ 1)2(4m+ 3)2

which is divisible by n = 4m+ 3.

)

n¡1P
k=1

k3 ´ 0 (modn) for n ´ 0, 1, or 3 (mod 4).

19
nP

k=1

k2 =
n(n + 1)(2n + 1)

6
fwell known formulag

)

nP
k=1

k2 = 0 (modn) , (n + 1)(2n + 1)

6
2 Z

, 6 j (n+ 1)(2n+ 1)

, (n+ 1)(2n+ 1) ´ 0 (mod 6)

Now n ´ 0, 1, 2, 3, 4, or 5 (mod 6).

If n = 0, (n+ 1)(2n+ 1) ´ 1 (mod 6)

If n = 1, (n+ 1)(2n+ 1) = 6 ´ 0 (mod 6) X

If n = 2, (n+ 1)(2n+ 1) = 15 ´ 3 (mod 6)

If n = 3, (n+ 1)(2n+ 1) = 28 ´ 4 (mod 6)

If n = 4, (n+ 1)(2n+ 1) = 45 ´ 3 (mod 6)

If n = 5, (n+ 1)(2n+ 1) = 66 ´ 0 (mod 6) X

)

nP
k=1

k2 ´ 0 (modn) , n ´ 1 or 5 (mod 6).

20 a i Proof: (By the Principle of Mathematical Induction)

Pn is that “3n ´ 1 + 2n (mod 4)”

(1) If n = 1, 31 ´ 1 + 2 (mod 4) is true.

) P1 is true.

(2) If Pk is true, then 3k ´ 1 + 2k (mod 4)

) 3k+1 = 3£ 3k

´ 3(1 + 2k) (mod 4)

´ 3 + 6k (mod 4)

´ 3 + 2k (mod 4)

´ 1 + 2[k + 1] (mod 4)

) P1 is true, and Pk+1 is true whenever Pk is true.

) Pn is true, n 2 Z +.

ii Proof: (By the Principle of Mathematical Induction)

Pn is that “4n ´ 1 + 3n (mod 9)”

(1) If n = 1, 41 ´ 1 + 3 (mod 9) is true.

) P1 is true.

(2) If Pk is true, then 4k ´ 1 + 3k (mod 9)

) 4k+1 = 4£ 4k

´ 4(1 + 3k) (mod 9)

´ 4 + 12k (mod 9)

´ 4 + 3k (mod 9)

´ 1 + 3[k + 1] (mod 9)

) P1 is true, and Pk+1 is true whenever Pk is true.

) Pn is true, n 2 Z +.

iii Proof: (By the Principle of Mathematical Induction)

Pn is that “5n ´ 1 + 4n (mod 16)”

(1) If n = 1, 5 ´ 1 + 4 (mod 16) is true.

) P1 is true.

(2) If Pk is true, then 5k ´ 1 + 4k (mod 16)

) 5k+1 = 5£ 5k

´ 5(1 + 4k) (mod 16)

´ 5 + 20k (mod 16)

´ 5 + 4k (mod 16)

´ 1 + 4[k + 1] (mod 16)

) P1 is true, and Pk+1 is true whenever Pk is true.

) Pn is true, n 2 Z +.

b We conjecture that:

(m+ 1)n ´ 1 +mn (modm2) for m 2 Z+, n 2 Z +.

Proof: (by induction)

(1) If n = 1, m+ 1 ´ 1 +m (modm2)
) P1 is true.

(2) If Pk is true then (m+ 1)k ´ 1 +mk (modm2)
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196 WORKED SOLUTIONS

) (m+ 1)k+1 = (m+ 1)k(m+ 1)

´ (1 +mk)(m+ 1) (modm2)

´ m+m2k + 1 +mk (modm2)

´ m+ 0 + 1 +mk (modm2)

´ 1 +m(k + 1) (modm2)

Thus P1 is true and Pk+1 is true whenever Pk is true.

) Pn is true. fPrinciple of mathematical inductiong
21 211 ¡ 1 = (24)2 £ 23 ¡ 1

= 162 £ 8¡ 1

´ (¡7)2 £ 8¡ 1 (mod 23)

´ 49£ 8¡ 1 (mod 23)

´ 3£ 8¡ 1 (mod 23)

´ 0 (mod 23) ) 211 ¡ 1 is divisible by 23.

EXERCISE 1F.2

1 a 2x ´ 3 (mod 7) has gcd(2, 7) = 1
) we have a unique solution.

By inspection, x ´ 5 (mod 7)

fas 2£ 5 = 10 ´ 3 (mod 7)g
b 8x ´ 5 (mod 25) has gcd(8, 25) = 1

) we have a unique solution.

By inspection, x ´ 10 (mod 25)

fas 8£ 10 = 80 ´ 5 (mod 25)g
c 3x ´ 6 (mod 12) has gcd(3, 12) = 3 where 3 j 6

) there are exactly 3 incongruent solutions.

Cancelling by 3 gives x ´ 2 (mod 4)
) the solutions are x = 2 + 4t where t = 0, 1, 2
) x ´ 2, 6, or 10 (mod 12)

d 9x ´ 144 (mod 99) has gcd(9, 99) = 9

where 9 j 144 f144 = 9£ 16g
) there are exactly 9 incongruent solutions.

Cancelling by 9 gives x ´ 16 (mod 11)

) x ´ 5 (mod 11)

) the solutions are x = 5 + 11t
where t = 0, 1, 2, 3, 4, 5, 6, 7, 8

) x ´ 5, 16, 27, 38, 49, 60, 71, 82, or 93 (mod 99)

e 18x ´ 30 (mod 40) has gcd(18, 40) = 2 where 2 j 30
) there are exactly 2 incongruent solutions.

Cancelling by 2 gives 9x ´ 15 (mod 20).
By inspection, x ´ 15 is a solution.

) the solutions are x = 15 + 20t where t = 0, 1
) x ´ 15 or 35 (mod 40)

f 3x ´ 2 (mod 7) has gcd(3, 7) = 1
) we have a unique solution.

By inspection, x ´ 3 (mod 7)

fas 3£ 3 = 9 ´ 2 (mod 7)g
g 15x ´ 9 (mod 27) has gcd(15, 27) = 3 where 3 j 9

) there are exactly 3 incongruent solutions.

Cancelling by 3 gives 5x ´ 3 (mod 9).
By inspection, x ´ 6 is a solution.

) the solutions are x = 6 + 9t where t = 0, 1, 2
) x ´ 6, 15, or 24 (mod 27)

h 56x ´ 14 (mod 21) has gcd(56, 21) = 7 where 7 j 14
) there are exactly 7 incongruent solutions.

Cancelling by 7 gives 8x ´ 2 (mod 3)
By inspection, x ´ 1 is a solution.

) the solutions are x = 1 + 3t where

t = 0, 1, 2, 3, 4, 5, 6
) x ´ 1, 4, 7, 10, 13, 16, or 19 (mod 21)

2 a x ´ 4 (mod 7) has gcd(1, 7) = 1
) a unique solution exists

) x = 4
and gcd(x, 7)

= gcd(4, 7)

= 1

) the statement is true.

b 12x ´ 15 (mod 35) has gcd(12, 35) = 1
) a unique solution exists.

By inspection, x = 10

and 4(10) = 40 ´ 5 (mod 7)

) 4x ´ 5 (mod 7)

) the statement is true.

c 12x ´ 15 (mod 39) has gcd(12, 39) = 3
) 3 solutions exist

and 4x ´ 5 (mod( 39
3
))

) 4x ´ 5 (mod 13)

) the statement is true.

d x ´ 7 (mod 14)
) x = 7 + 14k, k 2 Z

) gcd(x, 14)

= gcd(7 + 14k, 14)

= gcd(7(1 + 2k), 2£ 7)

= 7

) the statement is true.

e 5x ´ 5y (mod 19) has gcd(5, 19) = 1

) x ´ y (mod 19)
) the statement is true.

f 3x ´ y (mod 8)

) 5(3x) ´ 5(y) (mod 8) fcongruence lawg
) 15x¡ 5y = 8t, t 2 Z
) 5(3x¡ y) = 8t

) 5 j t fas 5 j= 8g
) 40 j 8t
) 15x¡ 5y ´ 0 (mod40)

) 15x ´ 5y (mod 40)
) the statement is true.

g 10x ´ 10y (mod 14) has gcd(10, 14) = 2

) x ´ y (mod( 14
2
))

) x ´ y (mod 7)

) the statement is true.

h x ´ 41 (mod 37)
) x = 41 + 37k, k 2 Z

) x (mod41) ´ 37k (mod 41)

´ 74 (mod 41) when k = 1

´ 33

) the statement is false.

i x ´ 37 (mod 40) and 0 6 x < 40
) x = 37 + 40k, k 2 Z and 0 6 x < 40
) 0 6 37 + 40k < 40

) 40k > ¡37 and 40k < 3

) k > ¡ 37
40

and k < 3
40

) k = 0
) x = 37
) the statement is true.

j 15x ´ 11 (mod 33) has gcd(15, 33) = 3 and 3 j= 11
) no solutions exist for x 2 Z
) the statement is true.
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WORKED SOLUTIONS 197

EXERCISE 1G

1 a x ´ 4 (mod 11), x ´ 3 (mod 7)
11 and 7 are relatively prime

and M = 11£ 7 = 77

) M1 = 77
11

= 7 and M2 = 77
7

= 11

Now 7x1 ´ 1 (mod 11) ) x1 = 8 finspectiong
and 11x2 ´ 1 (mod 7) ) x2 = 2 finspectiong
Now x ´ a1M1x1 + a2M2x2 (mod 77)

) x ´ (4)(7)(8) + (3)(11)(2) (mod 77)

) x ´ 290 (mod 77)

) x ´ 59 (mod 77)

b x ´ 1 (mod 5), x ´ 2 (mod 6), x ´ 3 (mod 7)

where 5, 6, 7 are relatively prime and M = 5£6£7 = 210

) M1 = 210
5

= 42, M2 = 210
6

= 35, M3 = 210
7

= 30

Now 42x1 ´ 1 (mod 5) ) x1 = 3

35x2 ´ 1 (mod 6) ) x2 = 5

30x3 ´ 1 (mod 7) ) x3 = 4

Now

x ´ a1M1x1 + a2M2x2 + a3M3x3 (mod 210)

) x ´ (1)(42)(3) + (2)(35)(5) + (3)(30)(4) (mod 210)

) x ´ 836 (mod 210)

) x ´ 206 (mod 210)

2 x ´ 2 (mod 3), x ´ 3 (mod 5), x ´ 2 (mod 7)

3, 5, and 7 are relatively prime and M = 3£ 5£ 7 = 105

) M1 = 105
3

= 35, M2 = 105
5

= 21, M3 = 105
7

= 15

Now 35x1 ´ 1 (mod 3) ) x1 = 2

21x2 ´ 1 (mod 5) ) x2 = 1

15x3 ´ 1 (mod 7) ) x3 = 1

Now x ´ a1M1x1 + a2M2x2 + a3M3x3 (mod 105)

) x ´ (2)(35)(2) + (3)(21)(1) + (2)(15)(1) (mod 105)

) x ´ 233 (mod 105)

) x ´ 23 (mod 105)

) x = 23, 128, 233, 338, and so on.

Thus 23 is the smallest solution, and all other solutions have the

form 23 + 105k, k 2 N .

3 a x ´ 1 (mod 2), x ´ 2 (mod 3), x ´ 3 (mod 5)
2, 3, 5 are relatively prime and M = 30
) M1 = 15, M2 = 10, M3 = 6

Now 15x1 ´ 1 (mod 2) ) x1 = 1

10x2 ´ 1 (mod 3) ) x2 = 1

6x3 ´ 1 (mod 5) ) x3 = 1

Now x ´ a1M1x1 + a2M2x2 + a3M3x3 (mod 30)

) x ´ (1)(15)(1) + (2)(10)(1) + (3)(6)(1) (mod 30)

) x ´ 53 (mod 30)

) x ´ 23 (mod 30)

b x ´ 0 (mod 2), x ´ 0 (mod 3), x ´ 1 (mod 5),

x ´ 6 (mod 7)
2, 3, 5, and 7 are relatively prime and

M = 2£ 3£ 5£ 7 = 210
) M1 = 105, M2 = 70, M3 = 42, M4 = 30

Now 105x1 ´ 1 (mod 2) ) x1 = 1

70x2 ´ 1 (mod 3) ) x2 = 1

42x3 ´ 1 (mod 5) ) x3 = 3

30x4 ´ 1 (mod 7) ) x4 = 4

) x ´ (0)(105)(1) + (0)(70)(1) + (1)(42)(3)

+ (6)(30)(4) (mod 210)

) x ´ 846 (mod 210)

) x ´ 6 (mod 210)

4 a x ´ 4 (mod 11)
) x = 4+ 11t, t 2 Z
and as x ´ 3 (mod 7)

then 4 + 11t ´ 3 (mod 7)

) 11t ´ ¡1 (mod7)

) 11t ´ 6 (mod 7)

) t ´ 5 (mod 7)

) t = 5 + 7s, s 2 Z

Thus x = 4 + 11t

= 4 + 11(5 + 7s), s 2 Z

= 59 + 77s, s 2 Z

) x ´ 59 (mod 77)

(This agrees with 1 a.)

b x ´ 1 (mod 5)
) x = 1+ 5r, r 2 Z
Substituting into the 2nd congruence x ´ 2 (mod 6),

1 + 5r ´ 2 (mod 6)

) 5r ´ 1 (mod 6)

) r ´ 5 (mod 6)

) r = 5 + 6s, s 2 Z

Substituting into the 3rd congruence x ´ 3 (mod 7),

1 + 5(5 + 6s) ´ 3 (mod 7)

) 26 + 30s ´ 3 (mod 7)

) 30s ´ ¡23 (mod 7)

) 2s ´ 5 (mod 7)

) s ´ 6 (mod 7)

) s = 6 + 7t, t 2 Z

) x = 26 + 30s

x = 26 + 30(6 + 7t)

x = 206 + 210t

) x ´ 206 (mod 210)

(This agrees with 1 b.)

c x ´ 0 (mod 2)
) x = 0+ 2q, q 2 Z
Substituting into the 2nd congruence x ´ 0 (mod 3),

2q ´ 0 (mod 3)

) q ´ 0 (mod 3)

) q = 3r, r 2 Z

Substituting into the 3rd congruence x ´ 1 (mod 5),

2(3r) ´ 1 (mod 5)

) 6r ´ 1 (mod 5)

) r ´ 1 (mod 5)

) r = 1 + 5s, s 2 Z

Substituting into the 4th congruence x ´ 6 (mod 7),

6(1 + 5s) ´ 6 (mod 7)

6 + 30s ´ 6 (mod 7)

) 30s ´ 0 (mod 7)

) s ´ 0 (mod 7)

) s = 7t

) x = 6 + 210t

) x ´ 6 (mod 210)

(This agrees with 3 b.)
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198 WORKED SOLUTIONS

5 17x ´ 3 (mod 210)

As 210 = 2£3£5£7 where these factors are relatively prime,

an equivalent problem is to solve simultaneously

17x ´ 3 (mod 2), 17x ´ 3 (mod 3), 17x ´ 3 (mod 5), and

17x ´ 3 (mod 7).

) x ´ 1 (mod 2), 2x ´ 0 (mod 3), 2x ´ 3 (mod 5), and

3x ´ 3 (mod 7)

) x ´ 1 (mod 2), x ´ 0 (mod 3), x ´ 4 (mod 5), and

x ´ 1 (mod 7).

As 2, 3, 5, and 7 are relatively prime, and M = 210, then

M1 = 105, M2 = 70, M3 = 42, M4 = 30.

Now 105x1 ´ 1 (mod 2) ) x1 = 1

70x2 ´ 1 (mod 3) ) x2 = 1

42x3 ´ 1 (mod 5) ) x3 = 3

30x4 ´ 1 (mod 7) ) x4 = 4

Thus

x ´ a1M1x1 + a2M2x2 + a3M3x3 + a4M4x4 (mod 210)

) x ´ (1)(105)(1) + 0 + (4)(42)(3) + (1)(30)(4) (mod 210)

) x ´ 729 (mod 210)

) x ´ 99 (mod 210)

6 We need to find x for x ´ 2 (mod 3), x ´ 2 (mod 4)

3, 4 are relatively prime and M = 12

) M1 = 4, M2 = 3.

Now 4x1 ´ 1 (mod 3) ) x1 = 1

3x2 ´ 1 (mod 4) ) x2 = 3

Now x ´ a1M1x1 + a2M2x2 (mod 12)

) x ´ (2)(4)(1) + (2)(3)(3) (mod 12)

) x ´ 26 (mod 12)

) x ´ 2 (mod 12)

) x = 2 + 12k, k 2 Z .

Thus, all integers with this property have form 2+12k, k 2 Z .

7 We need to find x for

x ´ 2 (mod 5), x ´ 2 (mod 7), x ´ 0 (mod 3)

5, 7, and 3 are relatively prime and M = 105

) M1 = 21, M2 = 15, M3 = 35.

Now 21x1 ´ 1 (mod 5) ) x1 = 1

15x2 ´ 1 (mod 7) ) x2 = 1

35x3 ´ 1 (mod 3) ) x3 = 2

) x ´ a1M1x1 + a2M2x2 + a3M3x3 (mod 105)

) x ´ (2)(21)(1) + (2)(15)(1) + 0 (mod 105)

) x ´ 72 (mod 105)

) x = 72 + 105k, k 2 Z .

Thus, all integers with this property have form 72+105k, k 2 Z .

8 We need to find x for

x ´ 1 (mod 3), x ´ 3 (mod 5), x ´ 0 (mod 4)

where 3, 5, and 4 are relatively prime and M = 3£5£4 = 60

) M1 = 20, M2 = 12, M3 = 15.

Now 20x1 ´ 1 (mod 3) ) x1 = 2

12x2 ´ 1 (mod 5) ) x2 = 3

15x3 ´ 1 (mod 4) ) x3 = 3

) x ´ a1M1x1 + a2M2x2 + a3M3x3 (mod 60)

) x ´ (1)(20)(2) + (3)(12)(3) + 0 (mod 60)

) x ´ 148 (mod 60)

) x ´ 28 (mod 60)

) x = 28 + 60k, k 2 Z .

Thus, all integers with this property are of the form 28 + 60k,

k 2 Z .

9 Let the total number of sweets be x.

) x ´ 1 (mod 2), x ´ 2 (mod 3), x ´ 3 (mod 4),

x ´ 4 (mod 5), x ´ 5 (mod 6), x ´ 0 (mod 7).

We cannot use the Chinese Remainder Theorem here as 2, 3, 4, 5,

6, and 7 are not relatively prime. For example, gcd(4, 6) = 2.

We notice that x+ 1 is divisible by 2, 3, 4, 5, and 6

) x+ 1 is divisible by 60 f60 = lcm(2, 3, 4, 5, 6)g
) x = ¡1 + 60s, s 2 Z

) x = 59, 119, 179, 239, ....

We test these in order for divisibility by 7

) 119 is the smallest possible number of sweets.

10 Let x be the number of gold coins.

Then, x ´ 3 (mod 17), x ´ 10 (mod 16), x ´ 0 (mod 15)

where 17, 16, and 15 are relatively prime

and M = 17£ 16£ 15 = 4080
with M1 = 240, M2 = 255, M3 = 272.

Now 240x1 ´ 1 (mod 17) ) x1 = 9

255x2 ´ 1 (mod 16) ) x2 = 15

272x3 ´ 1 (mod 15) ) x3 = 8

Now x ´ a1M1x1 + a2M2x2 + a3M3x3 (mod4080)

) x ´ (3)(240)(9) + (10)(255)(15) + 0 (mod 4080)

) x ´ 44 730 (mod 4080)

) x ´ 3930 (mod 4080)

) the smallest number of coins is 3930.

11 a 4x+ 7y = 5 .... (1)

) 4x = 5¡ 7y and 7y = 5¡ 4x

) 4x ´ 5 (mod 7) ) 7y ´ 5 (mod 4)

) x ´ 3 (mod 7) ) 3y ´ 1 (mod 4)

) x = 3 + 7t, t 2 Z ) y ´ 3 (mod 4)

) y = 3 + 4s, s 2 Z

and so in (1), 4(3 + 7t) + 7(3 + 4s) = 5

) 12 + 28t+ 21 + 28s = 5

) 28(s+ t) = 5¡ 33

) 28(s+ t) = ¡28

) s+ t = ¡1

Thus y = 3 + 4(¡1¡ t)

) y = ¡1¡ 4t

) x = 3 + 7t, y = ¡1¡ 4t, t 2 Z .

b i 11x+ 8y = 31 and 8y = 31¡ 11x

) 11x = 31¡ 8y ) 8y ´ 31 (mod 11)

) 11x ´ 31 (mod 8) ) 8y ´ 9 (mod 11)

) 3x ´ 7 (mod 8) ) y ´ 8 (mod 11)

) x ´ 5 (mod 8) ) y = 8 + 11s, s 2 Z

) x = 5 + 8t, t 2 Z

But 11x+ 8y = 31

) 55 + 88t+ 64 + 88s = 31

) 88(s+ t) = ¡88

) s+ t = ¡1

) s = ¡1¡ t

) y = 8 + 11(¡1¡ t)

) y = ¡3¡ 11t

) x = 5 + 8t, y = ¡3¡ 11t, t 2 Z .
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WORKED SOLUTIONS 199

ii 7x+ 5y = 13

) 7x = 13¡ 5y and 5y = 13¡ 7x

) 7x ´ 13 (mod 5) ) 5y ´ 13 (mod 7)

) 2x ´ 3 (mod 5) ) 5y ´ 6 (mod 7)

) x ´ 4 (mod 5) ) y ´ 4 (mod 7)

) x = 4 + 5t, t 2 Z ) y = 4 + 7s, s 2 Z

But 7x+ 5y = 13

) 28 + 35t+ 20 + 35s = 13

) 35(s+ t) = ¡35

) s+ t = ¡1

) s = ¡1¡ t

) y = 4 + 7(¡1¡ t)

) y = ¡3¡ 7t

) x = 4 + 5t, y = ¡3¡ 7t, t 2 Z .

12 2 j a, 3 j (a+ 1), 4 j (a+ 2), 5 j (a+ 3), 6 j (a+ 4)

) a ´ 0 (mod 2), a+ 1 ´ 0 (mod 3), a+ 2 ´ 0 (mod 4),

a+ 3 ´ 0 (mod 5), a+ 4 ´ 0 (mod 6)

) a is even and a ´ 2 (mod 3, 4, 5, or 6)

) a is even and a = 2+60t, t 2 Z f60 = lcm(3, 4, 5, 6)g
) a = 62, 122, 182, ....

) the smallest a is 62.

Note: As the divisors 2, 3, 4, 5, and 6 are not relatively prime

the Chinese Remainder Theorem may not be appropriate.

13 2x ´ 1 (mod 5), 3x ´ 9 (mod 6), 4x ´ 1 (mod 7), and

5x ´ 9 (mod 11)

) x ´ 3 (mod 5), x ´ 3 (mod 2),

"
on cancellation

x ´ 2 (mod 7),

x ´ 4 (mod 11) where 5, 2, 7, and 11 are relatively prime.

M = 770

) M1 = 154, M2 = 385, M3 = 110, M4 = 70

Now 154x1 ´ 1 (mod 5)

) 4x1 ´ 1 (mod 5)

) x1 = 4

385x2 ´ 1 (mod 2)

) x2 ´ 1 (mod 2)

) x2 = 1

110x3 ´ 1 (mod 7)

) 5x3 ´ 1 (mod 7)

) x3 = 3

70x4 ´ 1 (mod 11)

) 4x4 ´ 1 (mod 11)

) x4 = 3

Thus x ´ a1M1x1 + a2M2x2 + a3M3x3

+ a4M4x4 (mod 770)

) x ´ (3)(154)(4) + (3)(385)(1) + (2)(110)(3)

+ (4)(70)(3) (mod 770)

) x ´ 4503 (mod 770)

) x ´ 653 (mod 770).

EXERCISE 1H

1 A (mod 2) = 1 remainder

A (mod 3) = 1 remainder

fThe digit sum is 52 ´ 1 (mod 3)g

A (mod 5) = 2 fit ends in 7g
A (mod 9) = 7 remainders

fThe digit sum is 52 ´ 7 (mod 9)g
A (mod 11) = 0

) A is divisible by 11

fsum of digits in odd positions ¡ sum of digits in even positions

= 26¡ 26

= 0 which is a multiple of 11g
2 a i ai10i ´ 0 (mod 10) for i > 1

) A (mod 10) = 0 + 0 + ::::+ 0 + a0

= a0

ii ai10
i ´ 0 (mod 100) for i > 2

) A (mod 100) = 0 + 0 + ::::+ 0 + a110 + a0

= 10a1 + a0

iii ai10
i ´ 0 (mod 1000) for i > 3

) A (mod 1000)

= 0 + 0 + ::::+ 0 + a210
2 + a110 + a0

= 100a2 + 10a1 + a0

b A is divisible by 10 if it ends in 0
A is divisible by 100 if it ends in 00
A is divisible by 1000 if it ends in 000.

3 A = an¡110n¡1 + an¡210n¡2 + ::::+ a2102 + a110 + a0

a 4 j A , 4 j 10a1 + a0

, 4 j 2a1 + a0

f10k for k > 2 are all divisible by 4g
8 j A , 8 j 4a2 + 2a1 + a0
Proof:

ai10
i ´ 0 (mod 8) for i > 3

) A (mod 8) = 100a2 + 10a1 + a0

= 4a2 + 2a1 + a0
) 8 j A , 8 j (4a2 + 2a1 + a0)

b A is divisible by 16 , 16 j (8a3 + 4a2 + 2a1 + a0)

c i 28 ii 23 iii 210 iv 21 v 24 vi 24

4 a n ´ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (mod 10)

) n2 ´ 0, 1, 4, 9, 6, 5, 6, 9, 4, 1 (mod 10)

) n2 ´ 0, 1, 4, 5, 6, or 9 (mod 10)

b From a, an integer can be a perfect square if it ends in

0, 1, 4, 5, 6, or 9.
Thus none of the given integers can be a perfect square.

5
4P

r=1

r! = 1! + 2! + 3! + 4!

= 33 which is not a square

5P
r=1

r! = 33 + 5!

= 33 + 120

= 153 which is not a square

Since n! ends in 0 for all n > 5,
nP

r=1

n! ends in 3 for all

n > 5.

From 4, any such number cannot be square, so Claudia is correct.

6 Rk = 111 111 11::::1| {z }
k 1s

a Rk is divisible by 3 if k = 3n, n 2 Z +.

For example, R6 = 111 111 and the sum of its digits is

6 and 3 j 6.
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200 WORKED SOLUTIONS

b Rk is divisible by 9 if k = 9n, n 2 Z +.

c Rk is divisible by 11 if k = 2n, n 2 Z+.

For example, 111 111 = 11£ 10 101.

7 a 7 j 6994 , 7 j 699¡ 2(4)

, 7 j 691
, 7 j 69¡ 2(1)

, 7 j 67
which is not true.
So, 7 j= 6994.

7 j 6993 , 7 j 699¡ 2(3)

, 7 j 693
, 7 j 69¡ 2(3)

, 7 j 63
which is true.
So, 7 j 6993.

b 13 j 6994 , 13 j 699¡ 9(4)

, 13 j 663
, 13 j 66¡ 9(3)

, 13 j 39
which is true.
So, 13 j 6994.

13 j 6993 , 13 j 699¡ 9(3)

, 13 j 672
, 13 j 67¡ 9(2)

, 13 j 49
which is not true.
So, 13 j= 6993.

8 Let c = (an¡1an¡2::::a3a2a1)

) A = 10c+ a0

) ¡9A = ¡90c¡ 9a0

) ¡9A ´ c¡ 9a0 (mod13)

Thus 13 j A , 13 j ¡9A

, 13 j c¡ 9a0

, 13 j ((an¡1an¡2::::a2a1)¡ 9a0)

9 a i An integer is divisible by 25 if (a1a0) is divisible

by 25.

ii An integer is divisible by 125 if (a2a1a0) is divisible

by 125.

b i 53 ii 51 iii 59

10 a An integer is divisible by 6 if it is divisible by both 2 and 3.

b An integer is divisible by 12 if it is divisible by both 4 and 3.

c An integer is divisible by 14 if it is divisible by both 2 and 7.

d An integer is divisible by 15 if it is divisible by both 3 and 5.

11 a (1 + 7 + 3 + 3)¡ (0 + 6 + 7 + 2)

= 14¡ 15

= ¡1 which is not divisible by 11

) the number is not divisible by 11.

b (8 + 2 + 3 + 0 + 6 + 5 + 8)¡ (9 + 4 + 1 + 0 + 4 + 3)

= 32¡ 21

= 11 which is divisible by 11

) the number is divisible by 11.

c (1 + 8 + 3 + 6 + 1)¡ (0 + 6 + 2 + 7 + 5)

= 19¡ 20

= ¡1 which is not a multiple of 11

) the number is not divisible by 11.

12 a A = 201 984

² sum of digits = 2 + 0 + 1 + 9 + 8 + 4

= 24 where 3 j 24
) A is divisible by 3.

² sum of digits = 24 and 9 j= 24
) A is not divisible by 9.

² (2 + 1 + 8)¡ (0 + 9 + 4)

= 11¡ 13

= ¡2 which is not a multiple of 11

) A is not divisible by 11

b A = 101 582 283

² sum of digits = 1 + 0 + 1 + 5 + 8 + 2 + 2 + 8 + 3

= 30 and 3 j 30
) A is divisible by 3.

² sum of digits = 30 and 9 j= 30
) A is not divisible by 9.

² (1 + 1 + 8 + 2 + 3)¡ (0 + 5 + 2 + 8)

= 15¡ 15

= 0 which is a multiple of 11

) A is divisible by 11.

c A = 41 578 912 245

² sum of digits = 48 and 3 j 48 and 9 j= 48
) A is divisible by 3 but not by 9.

² (4 + 5 + 8 + 1 + 2 + 5)¡ (1 + 7 + 9 + 2 + 4)

= 25¡ 23

= 2 which is not a multiple of 11

) A is not divisible by 11.

d A = 10 415 486 358

² sum of digits = 45 and 3 j 45 and 9 j 45
) A is divisible by 3 and 9.

² (1 + 4 + 5 + 8 + 3 + 8)¡ (0 + 1 + 4 + 6 + 5)

= 29¡ 16

= 13 and 11 j= 13
) A is not divisible by 11.

13 n ´ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (mod 10)

) n(n¡ 1) ´ 0, 0, 2, 6, 2, 0, 0, 2, 6, 2 (mod 10)

) n2 ¡ n ´ 0, 2, 6 (mod 10)

) n2 ¡ n+ 7 ´ 7, 9, 3 (mod 10)

) n2 ¡ n+ 7 has a last digit of 3, 7, or 9.

14 a i A = 101 110 101 001

= 211 + 29 + 28 + 27 + 25 + 23 + 1

which is odd ) highest power of 2 is 20.

ii Note: 22n

= 4n

´ 1n (mod 3)

´ 1 (mod 3)

22n+1

= 4n £ 2

´ 1£ 2 (mod 3)

´ 2 (mod 3)

) A ´ 2 + 2 + 1 + 2 + 2 + 2 + 1 (mod 3)

) A ´ 12 (mod 3)

) A ´ 0 (mod 3)

) A is divisible by 3.
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WORKED SOLUTIONS 201

b i A = 1001 110 101 000

= 212 + 29 + 28 + 27 + 25 + 23

= 23(29 + 26 + 25 + 24 + 22 + 1| {z }
odd

)

) highest power of 2 is 23.

ii A ´ 1 + 2 + 1 + 2 + 2 + 2 (mod 3)

) A ´ 10 (mod 3)

) A ´ 1 (mod 3)

) A is not divisible by 3.

c i A = 1010 101 110 100 100

= 215 + 213 + 211 + 29 + 28 + 27 + 25 + 22

= 22(213 + 211 + 29 + 27 + 26 + 25 + 23 + 1| {z }
odd

)

) highest power of 2 is 22.

ii A ´ 2 + 2 + 2 + 2 + 1 + 2 + 2 + 1 (mod 3)

) A ´ 14 (mod 3)

) A ´ 2 (mod 3)

) A is not divisible by 3.

Note: The highest power of 2 that divides a binary number is

2n, where n is the number of 0s at the end of the number.

15 a i A = 10200 122 221 210

A = (313) + 2(311) + (38) + 2(37) + 2(36) + 2(35)

+ 2(34) + (33) + 2(32) + 31

) highest power of 3 is 31.

ii Note: 3n ´ 1n (mod 2)

) 3n ´ 1 (mod 2) for all n 2 N

) A ´ 1 + 2 + 1 + 2 + 2 + 2 + 2 + 1 + 2

+ 1 (mod 2)

´ 16 (mod 2)

´ 0 (mod 2)

) A is divisible by 2.

iii Note: 32n

= 9n

´ 1n (mod 4)

´ 1 (mod 4)

32n+1

= 9n £ 3

´ 1£ 3 (mod 4)

´ 3 (mod 4)

) A ´ 3 + 2(3) + 1 + 2(3) + 2(1) + 2(3) + 2(1)

+ 3 + 2(1) + 3 (mod 4)

) A ´ 34 (mod 4)

) A ´ 2 (mod 4)

) A is not divisible by 4.

b i A = 221 021 010 020 120

) A = 2(314) + 2(313) + 312 + 2(310) + 39 + 37

+ 2(34) + 32 + 2(3)

) highest power of 3 is 31.

ii A ´ 2 + 2 + 1 + 2 + 1 + 1 + 2 + 1 + 2 (mod 2)

´ 14 (mod 2)

´ 0 (mod 2)

) A is divisible by 2.

iii A ´ 2(1) + 2(3) + 1 + 2(1) + 3 + 3 + 2(1) + 1

+ 2(3) (mod 4)

´ 26 (mod 4)

´ 2 (mod 4)

) A is not divisible by 4.

c i A = 1010101 110 100 100

= 315 + 313 + 311 + 39 + 38 + 37 + 35 + 32

) highest power of 3 is 32.

ii A ´ 8 (mod 2)

) A ´ 0 (mod 2)

) A is divisible by 2.

iii A ´ 3 + 3 + 3 + 3 + 1 + 3 + 3 + 1 (mod 4)

´ 20 (mod 4)

´ 0 (mod 4)

) A is divisible by 4.

16 Let

A = an¡18n¡1+an¡28n¡2+ ::::+a383+a282+a18+a0

Now 8k ´ 1k (mod 7)

) 8k ´ 1 (mod 7) for all k = 1, 2, ...., n¡ 1

) A ´ an¡1 + an¡2 + ::::+ a3 + a2 + a1 + a0 (mod 7)

) A is divisible by 7 if the sum of its digits is divisible by 7.

Generalisation: If A is a base n number, A is divisible by n¡1

if the sum of its digits is divisible by n¡ 1.

17 Let

A = an¡18n¡1+an¡28n¡2+ ::::+a383+a282+a18+a0

Now 8 ´ (¡1) (mod 9)

) 82k ´ (¡1)2k (mod 9)

) 82k ´ 1 (mod 9)

and 82k+1 ´ ¡1 (mod 9)

) A ´ a0 ¡ a1 + a2 ¡ a3 + a4 ¡ :::: (mod 9)

) A ´ [a0 + a2 + a4 + ::::]¡ [a1 + a3 + a5 + ::::] (mod 9)

) A is divisible by 9 if the sum of the digits in the even positions

minus the sum of the digits in the odd positions is divisible

by 9.

Generalisation:

If A is a base n number, A is divisible by n+ 1 if the sum of

the digits in the even positions minus the sum of the digits in the

odd positions is divisible by n+ 1.

18 a X = (xnxn¡1xn¡2::::x3x2x1x0)25

= xn25
n + xn¡125

n¡1 + ::::+ x225
2 + x125 + x0

Now 25k ´ 0 (mod 5) for all k = 1, 2, ...., n

) X ´ x0 (mod 5)
) X is divisible by 5 if x0 is divisible by 5.

b As 25 ´ 1 (mod 2)

then 25k ´ 1 (mod 2) for all k = 1, 2, ...., n

) X ´ xn + xn¡1 + ::::+ x2 + x1 + x0 (mod 2)
) X is divisible by 2 if the sum of its digits is divisible

by 2.

c As 25 ´ 1 (mod 4)

then 25k ´ 1 (mod 4) for all k = 1, 2, ...., n

) X ´ xn + xn¡1 + ::::+ x2 + x1 + x0 (mod 4)
) X is divisible by 4 if the sum of its digits is divisible

by 4.

Now if X = (664 089 735)25
we see that 5 j X fas x0 = 5g
Also the sum of the digits of X is

6 + 6 + 4 + 0 + 8 + 9 + 7 + 3 + 5 = 48 where 4 j 48
) 4 j X
As gcd(4, 5) = 1 and 4 j X, 5 j X then 4£ 5 j X
) 20 j X
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202 WORKED SOLUTIONS

EXERCISE 1I

1 a 5152 (mod 13)

´ (512)12 £ 58 (mod 13)

´ 112 £ 254 (mod 13) fFLTg
´ 1£ (¡1)4 (mod 13)

´ 1 (mod 13)

b 456 (mod 7)

´ (46)9 £ 42 (mod 7)

´ 19 £ 16 (mod 7) fFLTg
´ 1£ 2 (mod 7)

´ 2 (mod 7)

c 8205 (mod 17)

´ (816)12 £ 813 (mod 17)

´ 112 £ 646 £ 8 (mod 17) fFLTg
´ 1£ (¡4)6 £ 8 (mod 17) f17£ 4 = 68g
´ 163 £ 8 (mod 17)

´ (¡1)3 £ 8 (mod 17)

´ ¡8 (mod 17)

´ 9 (mod 17)

d 395 (mod 13)

´ (312)7 £ 311 (mod 13)

´ 17 £ (33)3 £ 32 (mod 13) fFLTg
´ 1£ 273 £ 9 (mod 13)

´ 13 £ 9 (mod 13)

´ 9 (mod 13)

2 a 3x ´ 5 (mod 7) where 7 j= 3
) x ´ 35 £ 5 (mod 7)

) x ´ (32)2 £ 15 (mod 7)

) x ´ 22 £ 1 (mod 7)

) x ´ 4 (mod 7)

b 8x ´ 3 (mod 13) where 13 j= 8
) x ´ 811 £ 3 (mod 13)

) x ´ (82)5 £ 24 (mod 13)

) x ´ 645 £ (¡2) (mod 13)

) x ´ (¡1)5 £ (¡2) (mod 13) f65 = 13£ 5g
) x ´ 2 (mod 13)

c 7x ´ 2 (mod 11) where 11 j= 7
) x ´ 79 £ 2 (mod 11)

) x ´ (72)4 £ 14 (mod 11)

) x ´ 494 £ 3 (mod 11)

) x ´ 54 £ 3 (mod 11)

) x ´ (25)2 £ 3 (mod 11)

) x ´ 32 £ 3 (mod 11)

) x ´ 27 (mod 11)

) x ´ 5 (mod 11)

d 4x ´ 3 (mod 17) where 17 j= 4
) x ´ 415 £ 3 (mod 17)

) x ´ (42)7 £ 12 (mod 17)

) x ´ 167 £ 12 (mod 17)

) x ´ (¡1)7 £ 12 (mod 17)

) x ´ ¡12 (mod 17)

) x ´ 5 (mod 17)

3 a 263 = (26)10 £ 23

= (64)10 £ 8

´ 110 £ 8 (mod 63)

´ 8 (mod 63)

6´ 2 (mod 63) ) 63 is not prime.

b 2117 = (27)16 £ 25 f27 ´ 128 is close to 117g
´ 1116 £ 25 (mod 117)

´ 1218 £ 25 (mod 117)

´ 48 £ 25 (mod 117)

´ 221 (mod 117)

´ (27)3 (mod 117)

´ 113 (mod 17)

´ 121£ 11 (mod 117)

´ 4£ 11 (mod 117)

´ 44 (mod 117)

6´ 2 (mod 117) ) 117 is not prime.

c 229 = (25)5 £ 24

= 325 £ 16

´ 35 £ 16 (mod 29)

´ 33 £ 32 £ 16 (mod 29)

´ ¡2£ 144 (mod 29)

´ ¡2£¡1 (mod 29) f29£ 5 = 145g
´ 2 (mod 29)

This does not prove that 29 is a prime, as there

exist Carmichael numbers which are composite and

an ´ a (modn).

fSee note on page 84g
4 310 = (32)5

= 95

´ (¡2)5 (mod 11)

´ ¡32 (mod 11)

´ 1 (mod 11) f33 = 3£ 11g
5 19 is prime and 19 j= 13.

) 1318 ´ 1 (mod 19) fFLTg .... ( ¤ )

Thus 13133 + 5

= (1318)7 £ 137 + 5

´ 17 £ 137 + 5 (mod 19) ffrom ¤ g
´ (132)3 £ 13 + 5 (mod 19)

´ (¡2)3 £ 13 + 5 (mod 19) f171 = 9£ 19g
´ ¡8£ 13 + 5 (mod 19)

´ ¡99 (mod 19)

´ 15 (mod 19)

) the remainder is 15.

6 a 13 is a prime and 13 j= 11
) 1112 ´ 1 (mod 13) fFLTg .... (¤ )

Thus 11204 + 1

= (1112)17 + 1

´ 117 + 1 (mod 13) fusing ¤ g
´ 2 (mod 13)

6´ 0 (mod 13)

) 11204 + 1 is not divisible by 13.

b 17 is a prime and 17 j= 11
) 1116 ´ 1 (mod 17) fFLTg .... (¤ )
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WORKED SOLUTIONS 203

Thus 11204 + 1

= (1116)12 £ 1112 + 1

´ 112 £ (121)6 + 1 (mod 17) fusing ¤ g
´ 26 + 1 (mod 17) f17£ 7 = 119g
´ 65 (mod 17)

´ 14 (mod 17)

6´ 0 (mod 17)

) 11204 + 1 is not divisible by 17.

7 a 1316n+2 + 1

= (1316)n £ 132 + 1

´ 1n £ 169 + 1 (mod 17) fFLTg
´ 170 (mod 17)

´ 0 (mod 17)

) 17 j (1316n+2 + 1), n 2 Z+.

b 912n+4 ¡ 9

= (912)n £ 94 ¡ 9

´ 1n £ (¡4)4 ¡ 9 (mod 13) fFLTg
´ 247 (mod 13)

´ 0 (mod 13) f247 = 19£ 13g
) 13 j (912n+4 ¡ 9), n 2 Z+.

8 7100 = (72)50

= 4950

´ (¡1)50 (mod 10)

´ 1 (mod 10)

) the units digit is 1.

Note: As 10 is not prime we cannot use FLT.

9 a If x ´ ap¡2b (mod p)

then ax ´ ap¡1b (mod p)

) ax ´ (1)b (mod p) fFLTg
) ax ´ b (mod p) is verified.

b i 7x ´ 12 (mod 17)

) x ´ 715 £ 12 (mod 17)

) x ´ (49)7 £ 7£ 12 (mod 17)

) x ´ (¡2)7 £ 84 (mod 17) f17£ 3 = 51g
) x ´ 32£¡4£ 84 (mod 17)

) x ´ ¡2£¡4£¡1 (mod 17) f17£ 5 = 85g
) x ´ ¡8 (mod 17)

) x ´ 9 (mod 17)

Also 4x ´ 11 (mod19)

) x ´ 417 £ 11 (mod 19)

) x ´ 168 £ 4£ 11 (mod 19)

) x ´ (¡3)8 £ 6 (mod 19) f19£ 2 = 38g
) x ´ (81)2 £ 6 (mod 19)

) x ´ 52 £ 6 (mod 19) f19£ 4 = 76g
) x ´ 150 (mod 19)

) x ´ 17 (mod19) f19£ 7 = 133g
Using the Chinese Remainder Theorem, for

x ´ 9 (mod 17), x ´ 17 (mod 19)
M = 17£ 19 = 323
) M1 = 19, M2 = 17.

Now 19x1 ´ 1 (mod 17)

) 2x1 ´ 1 (mod 17)

) x1 = 9

and 17x2 ´ 1 (mod 19)

) ¡2x2 ´ 1 (mod 19)

) x2 = 9

) the solution is
x ´ a1M1x1 + a2M2x2 (mod 323)

) x ´ (9)(19)(9) + (17)(17)(9) (mod 323)

) x ´ 4140 (mod 323)

) x ´ 264 (mod 323)

ii 2x ´ 1 (mod 31)

) x ´ 229 £ 1 (mod 31)

) x ´ (25)5 £ 24 (mod 31)

) x ´ 15 £ 16 (mod 31)

) x ´ 16 (mod 31)

and 6x ´ 5 (mod 11)

) x ´ 69 £ 5 (mod 11)

) x ´ (62)4 £ 30 (mod 11)

) x ´ 34 £ (¡3) (mod 11)

) x ´ 33 £¡9 (mod 11)

) x ´ 5£ 2 (mod 11)

) x ´ 10 (mod 11)

also 3x ´ 17 (mod 29)

) x ´ 327 £ 17 (mod 29)

) x ´ (33)9 £ 17 (mod 29)

) x ´ (¡2)9 £ 17 (mod 29)

) x ´ ¡32£ 16£ 17 (mod 29)

) x ´ ¡3£ 16£ 17 (mod 29)

) x ´ ¡24£ 34 (mod 29)

) x ´ 5£ 5 (mod 29)

) x ´ 25 (mod 29)

Using the Chinese Remainder Theorem, as 31, 11, and

29 are relatively prime

M = 31£ 11£ 29 = 9889
M1 = 319, M2 = 899, M3 = 341.

Now 319x1 ´ 1 (mod 31)

) 9x1 ´ 1 (mod 31)

) x1 = 7

and 899x2 ´ 1 (mod 11)

) 8x2 ´ 1 (mod 11)

) x2 = 7

and 341x3 ´ 1 (mod 29)

) 22x3 ´ 1 (mod 29)

) x3 = 4

) x ´ a1M1x1 + a2M2x2 + a3M3x3 (mod 9889)

) x ´ (16)(319)(7) + (10)(899)(7)

+ (25)(341)(4) (mod 9889)

) x ´ 132 758 (mod 9889)

) x ´ 4201 (mod 9889)

10 a Since p is an odd prime, then

1 6 k 6 p¡ 1 ) p j= k
Thus kp¡1 ´ 1 (mod p) fFLTg
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204 WORKED SOLUTIONS

Hence
p¡1P
k=1

kp¡1 ´
p¡1P
k=1

1 (mod p)

´ p¡ 1 (mod p)

´ ¡1 (mod p)

b Since p is an odd prime, then

1 6 k 6 p¡ 1 ) p j= k
) kp ´ k (mod p) fCorollary of FLTg

)

p¡1P
k=1

kp ´
p¡1P
k=1

k (mod p)

´ 1 + 2 + 3 + ::::+ (p¡ 1) (mod p)

´ (p ¡ 1)(p)

2
(mod p)

´ p

³
p ¡ 1

2

´
(mod p)

´ 0 (mod p) fas p is odd,
p ¡ 1

2
2 Z+g

11 Suppose 3100 = an7n + an¡17n¡1 + ::::+ a272 + a17+ a0

then 3100 (mod 7) = a0.

Now 3100 (mod 7)

´ (36)16 £ 34 (mod 7)

´ 116 £ 9£ 9 (mod 7) fFLTg
´ 2£ 2 (mod 7)

´ 4 (mod 7)

) the last digit is 4.

12 a Since gcd(7, 11) = 1 the FLT applies.

711 ´ 7 (mod 11)

710 ´ 1 (mod 11)

73 ´ 2 (mod 11)

72 ´ 5 (mod 11)

) X ´ t(7) + 4(1) + (6¡ t)(2) + 2t(5) + 7t

+ 3 (mod 11)

) X ´ 7t+ 4 + 12¡ 2t+ 10t+ 7t+ 3 (mod 11)

) X ´ 22t+ 19 (mod 11)

) X ´ 8 (mod11)

) x0 = 8.

b If t = 1

X = 711 + 4£ 710 + 5£ 73 + 2£ 72 + 7 + 3

) X = 3107 229 56210

11 3 107 229 562 r

11 282 475 414 8

11 25 679 583 1

11 2 334 507 6

11 212 227 10

11 19 293 4

11 1753 10

11 159 4

11 14 5

1 3

) X = (1 3 5 4 (10) 4 (10) 6 1 8)11

13 a Let N = (anan¡1::::a2a1a0)14

) N = an14
n + an¡114

n¡1 + ::::+ a214
2

+ a114 + a0

) N = 14A+ a0 for some A 2 Z

) N ´ a0 (mod 14)

) N7 ´ a 7
0 (mod 14) .... (1)

Now a0 ´ 0, 1 (mod 2)

) a 7
0 ´ 07, 17 (mod 2)

) a 7
0 ´ 0, 1 (mod 2)

) a 7
0 ´ a0 (mod 2) .... (2)

and a 7
0 ´ a0 (mod 7) .... (3) fCorollary of FLTg

From (2) and (3),

a 7
0 ¡ a0 ´ 0 (mod 2 and mod7)

) 2 j (a 7
0 ¡ a0) and 7 j (a 7

0 ¡ a0)

) 14 j (a 7
0 ¡ a0) fas gcd(2, 7) = 1g

) a 7
0 ´ a0 (mod 14)

) N7 ´ a0 (mod 14) fusing (1)g
As N ´ a0 (mod 14) and N7 ´ a0 (mod 14), both N

and N7 have last digit a0 in base 14.

b Let N = (anan¡1::::a2a1a0)21

) N = 21B + a0 for some B 2 Z

) N ´ a0 (mod 21)

) N7 ´ a 7
0 (mod 21) .... (1)

Now a0 ´ 0, 1, or 2 (mod 3)

) a 7
0 ´ 07, 17, or 27 (mod 3)

) a 7
0 ´ 0, 1, or 128 (mod 3)

) a 7
0 ´ 0, 1, or 2 (mod 3)

) a 7
0 ´ a0 (mod 3) .... (2)

and a 7
0 ´ a0 (mod 7) .... (3) fCorollary to FLTg

) from (2) and (3),

3 j (a 7
0 ¡ a0) and 7 j (a 7

0 ¡ a0)

) 21 j (a 7
0 ¡ a0) fas gcd(3, 7) = 1g

) a 7
0 ´ a0 (mod 21)

) N7 ´ a0 (mod 21) fusing (1)g
As N ´ a0 (mod 21) and N7 ´ a0 (mod 21) both N

and N7 have last digit a0 in base 21.

EXERCISE 1J

1 There are 12 months in a year, so by the Pigeonhole Principle

there will be at least one month (pigeonhole) which is the birth

month of two or more people (pigeons).

2 Divide the dartboard into 6 equal sectors. The maximum distance

between any two points in a sector is 10 cm. Since there are

7 darts, at least two must be in the same sector (Pigeonhole

Principle). Hence there are two darts which are at most 10 cm

apart.

3 Divide the equilateral triangle

into 16 identical triangles as

shown. The length of each

side of the small triangles is

2:5 cm.

If there are 17 points, then

at least two must be in

the same triangle (Pigeonhole

Principle). Hence, there are at

least two points which are at

most 2:5 cm apart.

4 Suppose they each receive a different number of prizes. Since

each child receives at least one prize, the smallest number of

prizes there can be is

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55.

2 5. cm

2
5.

cm

10 cm
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WORKED SOLUTIONS 205

But there are only 50 prizes. Hence, at least two children must

receive the same number.

5 The pairs of numbers 1 & 12, 2 & 11, 3 & 10, 4 & 9, 5 & 8,

6 & 7 all add up to 13. Consider the three numbers which are

not selected. These can come from at most 3 of the pairs. Hence,

there are at least 3 pairs for which both numbers are selected.

6 The maximum number of days in a year is 366. So if 367 or

more are present this will ensure that at least two people present

have the same birthday.

) the minimum number of people needed = 367. fPHPg
7 a There are 2 different colours, so selecting 3 socks will ensure

that 2 of the socks are the same colour.

b It is possible that if we select 14 socks all of them could be

white.
) if we select 15 this will ensure that two different colours

will be selected. fPHPg
8 There are 26 letters in the English alphabet and 27 > 26.

Therefore, at least two words will start with the same letter.

fPHPg

9
90 000

366
¼ 245:9 .

) by the PHP there will be a group of 246 people who have the

same birthday.

10 The pairs with sum 11 are:

f1, 10g, f2, 9g, f3, 8g, f4, 7g, f5, 6g.

This set of subsets of f1, 2, 3, 4, ...., 10g partition the integers

1, 2, 3, 4, ...., 10.

If the subsets are the pigeonholes and we select any 6 distinct

numbers (pigeons) then there will be two such numbers with a

sum of 11.

11 A units digit could be one of 10 possibilities, 0, 1, 2, 3, ...., 9.

Let these possibilities be pigeonholes.

If we select 11 integers and place then into a pigeonhole

corresponding to its units digit, then by the PHP at least one

pigeonhole contains two of the integers and so at least two of

them will have the same units digit.

12 Suppose there are n > 2 people at a cocktail party.

Case (1) (Each person has at least 1 acquaintance.)

Each person has 1, 2, 3, 4, ...., n ¡ 1 acquaintances. If these

values are the pigeonholes, we place each person in a pigeonhole

corresponding to their number of acquaintances.

Since n > n ¡ 1, by the PHP, there will be two people in the

same pigeonhole, that is, with the same number of acquaintances.

Case (2) (Someone has no acquaintances.)

Each other person can have at most n¡ 2 acquaintances at the

party.

Thus each of the other n¡ 1 people have 1, 2, 3, ...., or n¡ 2

acquaintances. We let these n¡ 2 values be the pigeonholes.

Then, by the PHP, since n¡1 > n¡2 there will be two people

who have the same number of acquaintances.

13 We divide the square into

4 squares which are 1 unit by

1 unit and let these smaller

squares be the pigeonholes.

If 5 (> 4) points are arbitrarily

placed inside the 2£2 square

then by the PHP one smaller

square will contain at least two

points.

The distance between these points is at most the length of a

diagonal of a small square, which is
p
2 units.

) the distance between these two points is at most
p
2 units.

14 Let their test scores 7, 6, 5, or 4 be the pigeonholes. Since

there are 25 students and 4 pigeonholes, one pigeonhole contains

at least 25
4

= 6:25 students. So, there exists one pigeonhole

containing at least 7 students. Thus it is guaranteed that there

will be 7 students having the same score.

(Although possible, no greater number can be guaranteed.)

15 There are infinitely many powers of 2 (the pigeons). The 2001

residue classes modulo 2001 are the pigeonholes.

By the PHP there will be two powers of 2 in the same residue

class, and they will differ by a multiple of 2001.

16 a The ‘worst case’ is when the red balls are selected last.
) least number = 8 + 10 + 7+ 3

red

= 28.

b The ‘worst case’ is when two of each colour are selected first.
) least number = 2 + 2 + 2 + 2 + 1 = 9.

c The ‘worst case’ is when all green and blue balls are selected

first.
) least number = 10 + 8 + 1 other = 19.

17 a When 3 dice are rolled the possible totals are

3

three 1s

, 4, 5, 6, 7, ....,18

three 6s

.

So, there are 16 different totals.
) by the PHP, 17 rolls are needed to guarantee a repeated

total.

b The ‘worst case’ is when each total appears twice first.

) least number = 16£ 2 + 1 = 33 rolls.

EXERCISE 2A

1 a i 4 ii 4 iii 2, 2, 2, 2

b i 4 ii 6 iii 2, 3, 3, 4

c i 4 ii 6 iii 2, 2, 4, 4

d i 2 ii 1 iii 1, 1

e i 5 ii 4 iii 1, 1, 2, 2, 2

f i 6 ii 5 + 4 + 3 + 2 + 1 = 15

iii 5, 5, 5, 5, 5, 5

2 i Simple: a, d, e, f.

ii Connected: a, b, c, d, f.

iii Complete: d, f. ff is complete K6g
3 a Note: These are examples only.

i ii

iii iv

~`2 1

1

11

11

1

1

A

D C

B P
Q

R

S

T

X

YZ

W
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206 WORKED SOLUTIONS

v

b yes, for example

c (1) i, ii, iv, v are simple. (2) i, ii, iv, v are connected.

(3) iv is complete.

d i ii

iv (Called a null graph

on 5 vertices.)

4 a A simple connected graph of

order k can be constructed by

joining one vertex to each of

the other (k ¡ 1) vertices.

So, the minimum number of

edges is k ¡ 1.

b Since each edge is determined by a pair of vertices, the

number of edges in a complete graph on n vertices (Kn)

=

³
n
2

´
=

n(n ¡ 1)

2
As the complement of Kn is the null graph on n vertices, it

has no edges.

) it has size 0.

c Size of complement =

³
n
2

´
¡ e or

n(n ¡ 1)

2
¡ e.

d From a and b, e > n¡ 1 and e 6
n(n ¡ 1)

2
(if any more edges are added to a complete graph, it is no

longer simple.)

) n¡ 1 6 e 6
n(n ¡ 1)

2
) 2n¡ 2 6 2e 6 n2 ¡ n

5 a

P
deg(Vi)

= 2 + 2 + 2

= 6

= 2£ 3

= 2e

P
deg(Vi)

= 1 + 1 + 1 + 1 + 4

= 8

= 2£ 4

= 2e

P
deg(Vi)

= 2 + 2 + 3 + 3

= 10

= 2£ 5

= 2e

P
deg(Vi)

= 3 + 3 + 3 + 3

= 12

= 2£ 6

= 2e

P
deg(Vi)

= 2 + 2 + 3 + 3 + 4

= 14

= 2£ 7

= 2e

P
deg(Vi)

= 2 + 2 + 2 + 2 + 2 + 2

= 12

= 2£ 6

= 2e

Proposition:
P

deg(Vi) = 2e fe = sizeg
Proof:
If V is a vertex and E is an edge incident with V, we count

the pairs (V, E) in two different ways.

(1) As each vertex Vi is incident with deg(Vi) edges, the

number of pairs (V, E)

=
P

deg(Vi).

(2) As each edge is incident with 2 vertices, the number of

pairs (V, E) = 2e

)
P

deg(Vi) = 2e. f(1) and (2)g
b

P
deg(Vi) = 2e

) 1 + 2 + 2 + 3 + 4 + 5 + 5 = 2e

) 2e = 22

) e = 11

6
P

deg(Vi) = 1 + 2 + 3 + 4 + 4 + 5

) 2e = 19 which is impossible as e 2 N .

7 a For a graph to be simple, no vertex can have degree more

than n¡ 1. Here the order is 5, so we cannot have a vertex

of degree 5.

) no simple graph exists.

b deg(V1) = deg(V2) = 4

) deg(Vi) > 2 for i = 3, 4, 5

and as the degree sequence

contains 1, the degree sequence is

not possible

) no simple graph exists.

8 a Yes, the order is the number of values in the degree sequence,

and the size is the sum of the degrees of the vertices, divided

by 2.

b No. For example consider:

and

These graphs each have order 4 and size 3 but have different

degree sequences.

f1, 1, 1, 3 and 1, 1, 2, 2g

V1

V2

V3

Vk

V1 V2

V3V5

V4

A

D C

B P
Q

R

S

T
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WORKED SOLUTIONS 207

9 Note: These are examples only.

More than one answer is possible.

a b c Impossible as

the sum of the

degrees must

be even.

d e f

10 Graph is 2-regular

p = 4, q = 4, r = 2; q =
pr

2

p = 4, q = 6, r = 3; q =
pr

2

Proof:
P

deg(Vi) = 2e = 2q

But
P

deg(Vi)

= number of vertices £ r

= order £ r

= pr

Thus, 2q = pr

) q =
pr

q
.

11 a b c d

12 a W5 b K3, 3

c K6

Complements are:

a b c

13 a Number of edges for K10 =
10 £ 9

2
= 45

b Number of edges for K5, 3 = 5£ 3 = 15

c Number of edges for W8

= sum of outer and inner edges

= 2£ 7

= 14

d Number of edges for Kn =
n(n ¡ 1)

2
e Number of edges for Km, n = mn

14 a b c Not possible

15 K3, 2 has 3£ 2 = 6 edges

Its complement is this is K3

this is K2

and has size 3 + 1 = 4.

The complement of Km, n is the disconnected graph containing

the subgraphs Km and Kn

) has size =
m(m¡ 1)

2
+

n(n ¡ 1)

2

=
m(m¡ 1) + n(n¡ 1)

2
.

16 G has n vertices and e edges, n = e.

G0 also has e edges fgiveng
and G0 has

n(n ¡ 1)

2
¡ e edges ffrom 4 cg

) e =
n(n ¡ 1)

2
¡ e

) 2e =
e2 ¡ e

2
fn = eg

) 4e = e2 ¡ e

) e2 ¡ 5e = 0

) e(e¡ 5) = 0
) e = 0 or 5

If n = e = 0

this is when G = G0 = the null graph with no edges or vertices.

If n = e = 5 then for example

G: and G0:

17 a If G has order n, G0 has order n also

) order (G) + order of (G0) = 2n.

b If G has size e, G0 has size

³
n
2

´
¡ e ffrom 4 cg

) size (G) + size (G0) =
³
n
2

´ ³
or

n(n ¡ 1)

2

´

EXERCISE 2B

1 a Can represent a graph.

For example, where

deg(V1) = 2

deg(V2) = 2

deg(V3) = 3

deg(V4) = 1

b Cannot represent a graph as the table is not symmetric about

its main diagonal.

c Can represent a graph.

For example,

V1
V2

V3V4

V1

V2

V3
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208 WORKED SOLUTIONS

2 Total number of 1s

= 2 + 3 + 2 + 3

= 10P
deg(Vi) = 2 + 3 + 2 + 3

= 10 X

3 a
0
BB@

0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0

1
CCA

b
0
BB@

0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

1
CCA

c
0
BB@

0 0 1 1 0
0 0 1 0 1
1 1 0 0 0
1 0 0 0 1
0 1 0 1 0

1
CCA

4 a i ii

b i

0
BB@

0 0 0 1 0
0 0 0 0 0
0 0 0 0 1
1 0 0 0 1
0 0 1 1 0

1
CCA

ii

0
@ 0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

1
A

c Copy the adjacency table for G and

² keep the main diagonal

² everywhere else swap 0 and 1. That is, 0 $ 1.

5 a Sum of all entries = 2e

) 3 + 3 + 3 + 2 + 3 = 2e

) 2e = 14

) e = 7

b Sum of elements on or below main diagonal = e

) 3 + 1 + 2 + 3 + 5 = e

) e = 14

6 a K4
0
@ 0 1 1 1

1 0 1 1
1 1 0 1
1 1 1 0

1
A

b C4
0
@ 0 1 0 1

1 0 1 0
0 1 0 1
1 0 1 0

1
A

c W4
0
@ 0 1 1 1

1 0 1 1
1 1 0 1
1 1 1 0

1
A

d K1, 4
0
BB@

0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

1
CCA

e K2, 3
0
BB@

0 0 1 1 1
0 0 1 1 1
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0

1
CCA

7 a n£ n table with:0
BBB@

0
0

1

1
0

1
CCCA

1s everywhere else

0s on the main diagonal

b n£ n table with:0
BBBBBB@

0 1 1
1 0 1 0

1

0
1

1 1 0

1
CCCCCCA

1s in the far corners

1s on the diagonals either

side of the main diagonal

0s on the main diagonal

and everywhere else

c n£ n table with (for example):0
BBBBBB@

0 1 1 1
1 0 1 1
1 1 0 1 0
1 1 0

0 1
1 1 1 0

1
CCCCCCA

0s on the main diagonal

1s everywhere else in the

first row and column

1s on the diagonals either

side of the main diagonal

1s in the far corners of the

remainder

0s everywhere else

d (m+ n)£ (m+ n) table with:0
BBBBBB@

0 0 1 1

0 0 1 1
1 1 0 0

1 1 0 0

1
CCCCCCA

m£m block of 0s

m£ n block of 1s

n£ n block of 0s

n£m block of 1s

EXERCISE 2C.1

1 These are examples only.

a A C D

b A B C D

c A B C E D

d B C A E C D

V1 V2

V3V4

V1

V2

V3V4

V5

V1 V2

V3V4

V1

V2

V3V4

V5

V1 V2

V3V4

V1 V2

V3V4

V3

V2

V1

V4

V1

V2V3

V4

V1

V2 V3 V4 V5

V1 V2

V3 V4 V5

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.

.

.

.

.

. . . . . . .

. . .

. . .
.
.
.

.

.

.
.
.
.

.

.

.
. . .

. . .

. . .

. . . .

. . . . . . .

. . . . . . .

. . . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
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WORKED SOLUTIONS 209

e F E A C D F

f Impossible, a cycle of length 7 requires 7 distinct vertices.

g A B C A E F D A

h F E A C E D C B A D F

2 a E C A A B C B D C

b Impossible, for example we cannot include edge EC without

traversing it twice.

EXERCISE 2C.2

1 a Each vertex is even.
) the graph is Eulerian.

b The graph contains exactly two odd vertices.

) it is semi-Eulerian.

c The graph contains more than two odd vertices.

) it is neither Eulerian nor semi-Eulerian.

d The graph contains more than two odd vertices.

) it is neither Eulerian nor semi-Eulerian.

e The graph contains exactly two odd vertices.

) it is semi-Eulerian.

f The graph contains more than two odd vertices.

) it is neither Eulerian nor semi-Eulerian.

2 Note: These are examples only.

a b c

3 a K5 All vertices have degree 4, and

the graph is connected.

Thus all vertices are even and

hence K5 is Eulerian.

b K2, 3 Exactly two vertices have odd

degree (A and B)

) K2, 3 is semi-Eulerian.

c Wn All outer vertices V1, V2, V3,

...., Vn¡1 have odd degree.

Since Wn is defined only for n > 4, Wn always has at

least n¡ 1 > 3 odd vertices.
) Wn is neither Eulerian nor semi-Eulerian.

d Cm: C1 is , one even vertex.

) C1 is Eulerian.

C2 is , two even vertices.

) C2 is Eulerian.
In Cm where m > 3,

Every vertex is even.

fdegree 2g
) Cm, m > 3 is Eulerian.

So, Cm is Eulerian for all m 2 Z+.

4 a Kn has n vertices each of degree n¡ 1.

So, when n¡ 1 is even, Kn is Eulerian
) Kn is Eulerian , n is odd for n > 3.

b In Km, n, each vertex has degree m or n.

) Km, n is Eulerian , m and n are even.

5 a Since there are only five vertices, each vertex has

degree 6 4. That is, 0 6 d 6 4.

From Exercise 2A question 5,P
deg(G) = 2e fe = number of edgesg
) 5d = 2e

) 2 j d fand 5 j e as 2, 5 are primesg
) d = 0, 2, or 4

Each of these exist:
d = 0 d = 2 d = 4

b If G is connected, d = 2 or 4.

c If G is Eulerian, G is connected and all vertices are even
) d = 2 or 4.

6 a girth

= length of shortest cycle

= 3

b

girth = 4

c

girth = 5

7 a has 1 vertex of order 5,

1 of order 4, 1 of order 3,

2 of order 2.

) it does not have all vertices of even degree

) the circuit is not Eulerian
) a circular walk cannot be performed.

b Removing the bridge from I1 to BB or adding another bridge

from I1 to BB will create a circuit diagram which is Eulerian

(all vertices are now even).

A B

V1

V2

V3

Vn

Vn-1

Top Bank (TB)

Bottom Bank (BB)

I1

I3

I2
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210 WORKED SOLUTIONS

8 For any graph G, the sum of the degrees of the vertices is even.

) there must be an even number of vertices of odd degree.

We can add an edge between any pair of vertices with odd degree,

thus reducing the number of vertices with odd degree by 2. We

repeat until all vertices have even degree.

Thus, as we obtain a connected graph with all vertices of even

degree, the graph G is Eulerian.

9 a 4 pen strokes are needed.

An example is shown

alongside.

b If a graph has 2 vertices of odd degree, it is semi-Eulerian,

and the graph can be drawn with a single pen stroke.

This graph has 8 vertices of odd degree, so we could make

the graph semi-Eulerian by adding 3 new edges to the graph.

Equivalently, we can think of adding an edge between two

vertices as lifting the pen at one vertex and moving it to the

other.
So, an additional 3 pen strokes are required to complete the

diagram, making 4 in total.

10 a There are 4 vertices of

odd degree. These are

B, P, Q, and R.
) no matter where we

start including A or

B the graph is not

traversable.

b If we add two new edges BP and QR as shown, the graph

obtained is connected with all vertices having even degree.

Thus the new graph is Eulerian and so contains an Eulerian

circuit starting and ending at any vertex, including A and B.

This is interpreted as:

The most efficient method of traversing all streets, starting

and ending at A is to use an Eulerian circuit (which exists by

the above reasoning), that traverses BP and QR twice.

11 () ) Suppose the graph is bipartite, so there are two disjoint

vertex sets A and B. Suppose we are at a particular vertex

in set A. In order to form a circuit back to this vertex, we

must move to set B then back to set A, and repeat this a

certain number of times. Each trip from set A to set B

and back adds 2 to the length of the circuit.

Hence, the circuit must have even length.

(( ) Suppose the simple graph contains only even length

circuits.

If we choose any vertex V 2 V (G), then we can define

sets of vertices:

Set A is the set of vertices with paths of odd length to V.

Set B is the set of vertices with paths of even length to V.

Now if any vertex W belongs to both sets A and B, then

there must exist an odd length circuit in the graph. This

is a contradiction, so A and B are disjoint sets.

Now suppose vertices X, Y 2 A are adjacent

) there must exist a path of even length from Y to V

via X.

) Y 2 B which is a contradiction since A and B are

disjoint.

) no two vertices in set A are adjacent.

Similarly, no two vertices in set B are adjacent.

) the graph is bipartite.

12 Consider K5, say

Total number of edges

=

³
5
2

´
=

5 £ 4

2

and K4 has
4 £ 3

2
edges.

Thus, any simple subgraph of 4 vertices has at most

4 £ 3

2
edges.

So, if G has more than
4 £ 3

2
edges, the 5th vertex must be

connected by an edge to the subgraph K4.

In general, Kn has
n(n¡ 1)

2
edges and Kn¡1 has

(n ¡ 1)(n¡ 2)

2
edges.

Thus in a graph G on n vertices, any subgraph on

(n¡ 1) vertices has at most
(n¡ 1)(n ¡ 2)

2
edges.

Thus if G has more than
(n ¡ 1)(n¡ 2)

2
edges, the nth vertex

must be connected by an edge to the subgraph containing the

remaining vertices.

EXERCISE 2C.3

1 a K5 There exists a cycle through

each vertex. For example,

A B C D E A.
) K5 is Hamiltonian.

b There does not exist a cycle

through each vertex.

) K2, 3 is not Hamiltonian.

But D B E A C

is a path which passes through

each vertex exactly once.

) K2, 3 is

semi-Hamiltonian.

c F A B C D E

F is a path through every

vertex.
) W6 is Hamiltonian.

d There does not exist a cycle

through each vertex.

) the graph is not

Hamiltonian.
But A B C E D

is a path through every vertex.

) the graph is

semi-Hamiltonian.

A B

Q R

P

A

B

CD

E

A B

C D E

A

BE

D C

F

A

B C

D

E
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WORKED SOLUTIONS 211

e A B C D E A

is a cycle through every vertex.

) the graph is Hamiltonian.

f There does not exist a cycle

through each vertex.

) the graph is not

Hamiltonian.
But A B C D is

a path through every vertex.

) the graph is

semi-Hamiltonian.

g There does not exist a cycle

through each vertex.

) the graph is not

Hamiltonian.
But A B C D E

is a path through every vertex.

) the graph is

semi-Hamiltonian.

h A B C D E F

G H A is a cycle

through each vertex.

) the graph is Hamiltonian.

2 a b c d e f g h

Theorem 1 X X X

Theorem 2 X X X

Theorem 3 X X

3 Note: These are examples only.

a Cn for all n > 3 b Wn for all n > 4

c d K2, 3

4 m and n must be equal and m, n > 2.

5 a Kn has n vertices, each with degree n¡ 1.

From the observation of Dirac, a Hamiltonian cycle exists if

n¡ 1 > 1
2
n, ) if n > 2

However, K2 is not Hamiltonian. (Dirac requires n > 3.)

So, Kn contains a Hamiltonian cycle for all n > 3.

b The number of Hamiltonian cycles in Kn

=
number of orderings of n vertices

number of choices for initial vertex| {z }
since it is a cycle

£ 2|{z}
since the graph is

undirected, clockwise

ordering gives the

same cycle as

anticlockwise

=
n!

n£ 2

=
(n ¡ 1)!

2

6

7 a From Exercise 2C.2, question 11, a simple graph is bipartite

if and only if each of its circuits is of even length.

) if a bipartite graph has an odd number of vertices, it

cannot contain a circuit visiting every vertex.

) G cannot be Hamiltonian.

b If we label each vertex either A

or B, we can show that the graph

is bipartite.

becomes

Since there are 13 vertices, which is an odd number, the graph

is not Hamiltonian.

c If each square on a chessboard is represented by a vertex,

and vertices are adjacent if a knight can move between them,

then the resulting graph is bipartite. The white squares and

the black squares form the two disjoint sets. If n is odd then

n£ n is also odd. Hence no Hamiltonian cycle exists.

Note: If n is even, a Hamiltonian cycle still does not

necessarily exist!

d i K2, 2: is Hamiltonian.

ii is semi-Hamiltonian but

not Hamiltonian.

A B C

DE

FG

H

A1

B4

A7

A6 A2

B1B3

A3

A4

B6

B2

B5

A5 A1 A2 A3 A4 A5 A6 A7

B1 B2 B3 B4 B5 B6

V1

V5

V10

V4

V9

V8

V3V7

V2

V6

V11

E

A B

CD

A

B

C

D

E

A

B C

D

iii K1, 3: is not Hamiltonian and not

semi-Hamiltonian.

8

) the graph is bipartite

with an odd number

of vertices.

) the graph is

not Hamiltonian.

9 For example,

V1

V2

V3

V4

V5

V6

V7 V8

V9V10

V11
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212 WORKED SOLUTIONS

EXERCISE 2D.1

1 a v = 10

b e = 13

c f = 5

d

deg(F1) = 8, deg(F2) = 3,

deg(F3) = 4, deg(F4) = 3,

deg(F5) = 8

2 For example:

a b

c d

3 a, b No, the problem cannot be solved on any surface.

4 a

becomes,

for example

b non-planar

c

becomes,

for example

d non-planar

5 a i A B A (2)

ii deg(F ) = 2

iii
P

deg(F ) = 2

= 2£ 1

= 2e

b i A B C D E

H C I A (8)

ii deg(F1) = deg(F2) = 4

deg(F3) = 8

iii
P

deg(F ) = 4 + 4 + 8

= 16

= 2£ 8

= 2e

c i H E I E C

D C B A B

C E H (12)

ii deg(F ) = 12

iii
P

deg(F ) = 12

= 2£ 6

= 2e

d i A B E D H

D C B A (8)

ii deg(F1) = 4,

deg(F2) = 8

iii
P

deg(F ) = 4 + 8

= 12

= 2£ 6

= 2e

e i H E A B C

D E H (7)

ii deg(F1) = 3,

deg(F2) = 10,

deg(F3) = 7

iii
P

deg(F ) = 3 + 10 + 7

= 20

= 2£ 10

= 2e

6 Each edge is either on the border of one or more finite faces

or only on the border of the infinite face.

) each edge contributes

either 1 to the degree of two different faces

or 2 to the degree of the infinite face.

) each edge contributes 2 to the sum of the degrees of the faces.

)
P

deg(F ) = 2e.

F a face of G

EXERCISE 2D.2

1 K5 e = 10, v = 5

Suppose K5 is planar.

As K5 is connected, by Euler’s formula,

e+ 2 = f + v

) f = 10 + 2¡ 5

) f = 7

Since v > 3, deg(Fi) > 3 for any face of K5

)
P

deg(F ) > 21

) 2e > 21 f
P

deg(F ) = 2eg
) e > 10 1

2

) e > 11 fas e 2 Z +g
a contradiction as e = 10.

) K5 is not planar.

2 If G is a simple, connected planar graph with v > 3 then

deg(Fi) > 3 for every face of G

)
P

deg(F ) > 3f

) 2e > 3f f
P

deg(F ) = 2eg
) 2e > 3(e+ 2¡ v) fusing Euler’s formulag
) 2e > 3e+ 6¡ 3v

) e 6 3v ¡ 6

A
B D

C

E
A B

D C

A C

B

D

E F

A B

E D

F C

H I

L K

G J

A

B

C

D

E

F

G

H
H A

E

F

G
B

C

D

A B C

E D

A B C

D

E

F1

F2

F4

F3

F5

F

A B

A

B

C

D

E

HI

F1 F2

F3

A

B

C

D

E
H

I

F

A

B

C

D

E

H

F1

F2

A

B

C

DE

H

I
J

K

F1

F2

F3
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WORKED SOLUTIONS 213

3 If G is a simple, connected graph with each face of degree 4 or

more, then

deg(Fi) > 4 for every face of G

)
P

deg(F ) > 4f

) 2e > 4f f
P

deg(F ) = 2eg
) e > 2f

) e > 2(e+ 2¡ v) fusing Euler’s formulag
) e > 2e+ 4¡ 2v

) e 6 2v ¡ 4

4 In a bipartite graph, each cycle has even length. In fact each cycle

has length at least 4.

) deg(Fi) > 4 for every face of G

) by question 3, e 6 2v ¡ 4.

Note: e 6 2v ¡ 4 is a necessary but not a sufficient condition

for a bipartite graph to be planar.

For example, is a connected bipartite

graph but not planar.

However, it has e = 12
and v = 9, so

e 6 2v¡ 4 is satisfied.

5 a In K5; e = 10, v = 5
Thus in e 6 3v ¡ 6, 10 6 9 which is false
) K5 is not planar.
In K3, 3; e = 9, v = 6
Thus in e 6 2v ¡ 4, 9 6 8
which is false
) K3, 3 is not planar.

Note: Bipartite graph is planar ) e 6 2v ¡ 4
) e > 2v ¡ 4 ) bipartite graph not planar

(contrapositive).

b K4 is connected with v = 4 vertices

) v > 3

has e = 6 edges

and e 6 3v ¡ 6

) 6 6 6

Likewise K2, 3 is connected with v = 5

and e = 6

) e 6 2v ¡ 4

) 6 6 6

Thus both K4 and K2, 3 may or may not be planar, both

inconclusive.

c K4 is planar as, for example,

becomes

K2, 3 is planar as, for example,

becomes

6 If the length of the shortest cycle in a connected planar graph G

is 5 then,

deg(Fi) > 5 for every face of G

)
P

deg(F ) > 5f for f faces in G

) 2e > 5f f
P

deg(F ) = 2eg
) 2e > 5(e+ 2¡ v) fusing Euler’s formulag
) 2e > 5e+ 10¡ 5v

) 3e 6 5v ¡ 10 .... ( ¤ )

For the connected Petersen graph, v = 10, e = 15 and the

length of the shortest cycle is 5.

In ¤, 3£ 15 6 5£ 10¡ 10 is not satisfied

as 45 40

) the Petersen graph is not planar.

7 As g is the length of the shortest cycle then deg(Fi) > g for

each finite face and ) deg(Finf) > g for the infinite face

also.

Hence
P

deg(F ) > gf

) 2e > gf f
P

deg(F ) = 2eg
But for a connected simple planar graph,

f = e+ 2¡ v fEuler’s formulag
Hence, 2e > ge+ 2g ¡ vg

) e(g ¡ 2) 6 g(v ¡ 2)

Note: For simple graphs, g > 3.

8 a Let G be a simple connected planar graph on v vertices where

v > 3.
From question 2, e 6 3v ¡ 6.

Suppose each vertex of G has degree > 6.

)
P

deg(V ) > 6v

But
P

deg(V ) = 2e

Hence 2e > 6v

) e > 3v

) e > 3v > e+ 6 a contradiction

) G must have at least one vertex of degree 6 5.

b Suppose the simple, connected, complete graph Kn is planar.

By question 2, e 6 3v ¡ 6.

But e =
n(n¡ 1)

2
for Kn and v = n.

Hence,
n(n¡ 1)

2
6 3n¡ 6

) n2 ¡ n 6 6n¡ 12

) n2 ¡ 7n+ 12 6 0

) (n¡ 3)(n¡ 4) 6 0

) 3 6 n 6 4

) n = 3 or 4

and as K3 and K4 exist, for n > 3,

Kn is planar , n = 3 or 4.

Also K1 and K2 are planar.

Thus the only complete graphs Kn which are planar are

K1, K2, K3, and K4.

9

A B

CD

A B

CD

A B

C D E

BA

C

E

D

+ - +
3 4 n
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214 WORKED SOLUTIONS

10 Consider the complete bipartite graph K2, n.

By construction, K2, n

becomes

) K2, n is planar.

11 The complete bipartite graph Ks, t has v = s+ t and e = st.

By question 4, if Ks, t is planar then

e 6 2v ¡ 4

) st 6 2(s+ t)¡ 4

) st¡ 2s¡ 2t+ 4 6 0

) (s¡ 2)(t¡ 2) 6 0 .... ( ¤ )

) Ks, t is not planar if

(s¡ 2)(t¡ 2) > 0

) s > 2, t > 2 fs, t > 1g
) s > 3, t > 3

12 G has v vertices where v > 11 and e edges

) G0 has v vertices and
v(v ¡ 1)

2
¡ e edges.

fas together G, G0 partition all
v(v ¡ 1)

2
edgesg

Suppose both G and G0 are planar.

Then from question 2,

e 6 3v ¡ 6 and
v(v ¡ 1)

2
¡ e 6 3v ¡ 6

) e >
v(v ¡ 1)

2
¡ 3v + 6

Thus
v(v ¡ 1)

2
¡ 3v + 6 6 3v ¡ 6

)
v(v ¡ 1)

2
6 6v ¡ 12

) v2 ¡ v 6 12v ¡ 24

) v2 ¡ 13v + 24 6 0 .... ( ¤ )

v2 ¡ 13v + 24 = 0 , v ¼ 2:33 or 10:77

Thus for v > 11, v2 ¡ 13v + 24 > 0 which contradicts ¤.

) G and G0 cannot both be planar.

EXERCISE 2E.1

1 a and c are trees.

b and d contain loops, ) are not trees.

2

3 Only K2 is a tree. Kn where n > 2 contains at least one cycle.

4 a From property 4,

T is a tree , it is connected and has n¡ 1 edges.

)
P

deg(V ) = 2e

= 2(n¡ 1)

b i
P

deg(V ) = 2£ 4 + 1£ 3 + 1£ 2 + (n¡ 4)£ 1

) 2(n¡ 1) = n+ 9

) 2n¡ 2 = n+ 9

) n = 11 So, it has 11 vertices.

ii One example is:

c i Likewise,

2(n¡ 1) = 2£ 5 + 3£ 3 + 2£ 2 + (n¡ 7)£ 1

) 2n¡ 2 = n+ 16

) n = 18 So, it has 18 vertices.

ii One example is:

5 One example is:

6 The complete bipartite graph Km, n has mn edges and

m+ n vertices.

But a tree of order k has k ¡ 1 edges

) mn = m+ n¡ 1

) mn¡m¡ n+ 1 = 0

) (m¡ 1)(n¡ 1) = 0

) m = 1 or n = 1

) Km, n is a tree if m = 1 or n = 1.

7 As a tree is a connected graph, no vertex can have a degree 0.

Now if every vertex has degree 2, the sum of the degrees of the

n vertices is 2n.

But a tree with n nodes has n¡ 1 edges and so the sum of the

degrees is 2(n¡ 1) = 2n¡ 2 which is < 2n

) at least 2 vertices must have degree one.

EXERCISE 2E.2

1 These are examples only.

a b

2 Cn has n vertices and n edges.

Removing any one of the

n edges will result in a

spanning tree.

So, there are n different

spanning trees for Cn, n > 3.

A

3 2 2 3

1 2
2

1 0

3

4 4

3 2
1 2

33

A C

DB

G

E F

H

3 4

2 3

1 2

10

V1

V2

V3

Vn

Vn+2

Vn+1
Vn+2Vn+1

Vn

V1

+ - +
2.33 10.77 v

V1

V2

V3Vn-1

Vn
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WORKED SOLUTIONS 215

3 a i K2: has spanning tree:

ii K3: has spanning tree:

iii K4: has spanning trees:

(1)

,

(2)
0
@ or

1
A

iv K5: has spanning trees:

(1)

,

(2)

,

(3)

v K6: has spanning trees:

(1)

,

(2)

,

(3)

(4)

,

(5)

,

(6)

.

b Let Dn represent “the vertex of degree n”.

i For K2, there is 1 spanning tree.

For K3, there are 3 different ways of choosing the D2.

For K4,

In (1), there are 4 ways of choosing D3.

In (2), there are

³
4
2

´
ways of choosing D2s and there

are 2 ways to join them to the remaining 2 vertices.

) total = 4 +

³
4
2

´
£ 2 = 16

For K5,

In (1), there are 5 ways of choosing D4.

In (2), there are 5 ways of choosing D3 and 4 ways

of choosing D2 and 3 ways of choosing the vertex it

joins to.

In (3), there are 1
2
£ 5! ways

freverse order gives the same spanning treeg
) total = 5 + 5£ 4£ 3 + 1

2
(5!)

= 125

For K6,

In (1), there are 6 ways of choosing D5.

In (2), there are 6 choices for choosing D4 and 5 ways

of choosing D2 and 4 ways of choosing the vertex it

joins to.

In (3), there are 6 ways of choosing D3 and

5 £ 4 £ 3 ways of choosing the path of length 3

from D3.

In (4), there are 6 ways of choosing V and

³
5
2

´
ways

of choosing the D2s and 3! ways of joining the remaining

3 vertices.

In (5), there are

³
6
2

´
ways to choose the D3s and³

4
2

´
ways of pairing up the 4 remaining vertices.

In (6), there are 1
2
£ 6! ways.

) total = 6 + 6£
³
5
2

´
£ 2 + 6£ 5£ 4£ 3

+ 6£
³
5
2

´
£ 3! +

³
6
2

´³
4
2

´
+

1

2
£ 6!

= 1296

ii Since K2 has 1 = 20 spanning tree

K3 has 3 = 31 spanning trees

K4 has 16 = 42 spanning trees

K5 has 125 = 53 spanning trees

and K6 has 1296 = 64 spanning trees

we postulate that:

Kn has nn¡2 spanning trees, n > 2.

4 a i K1, 1: has spanning tree:

ii K2, 2: has spanning tree:

iii K3, 3: has spanning trees:

(1) (2)

(3) (4)

b For K1, 1, there is 1 spanning tree.

For K2, 2,

there are 2 choices for D2 from one set and 2 from the other.
) total = 2£ 2 = 4

For K3, 3,

In (1), there are 3 ways to choose D3 on the top and 3 ways

to choose D3 on the bottom.
In (2), there are 3 ways to choose D3 on the top and 3 ways

to choose D1 on the bottom and 2 ways to choose how the

D2s on the bottom connect to the D1s on top.

In (3), we have the symmetric case to (2).

In (4), there are 3 ways to choose D1 on top and 3 ways to

choose D1 on bottom and 2 ways to choose which vertex D1

on top connects to and 2 ways to choose which vertex D1 on

the bottom connects to.
total number = 3£ 3 + 2(3£ 3£ 2) + 3£ 3£ 2£ 2

= 81
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216 WORKED SOLUTIONS

Since K1, 1 has 1 = 10 spanning trees

K2, 2 has 4 = 22 spanning trees

K3, 3 has 81 = 34 spanning trees

K4, 4 has 4096 = 46 spanning trees

we postulate that:

Kn, n has n2n¡2 spanning trees.

5 For K2, 1 we have only 1 tree;

By symmetry K1, 2 also has 1 tree.

For K3, 2 we may have:

(1)

or

(2)

In (1), there are 2 ways to choose D3 below and 3 ways to choose

which vertex D1 on the bottom connects to.

In (2), there are 3 ways to choose D2 on top and 2 ways to choose

how the top D1s connect to the bottom vertices.

) K3, 2 has 2£ 3 + 3£ 2 = 12 spanning trees.

So, using question 4, we have:

K1, 1 has 1 = 10 £ 10 spanning tree

K1, 2 has 1 = 11 £ 20 spanning tree

K2, 1 has 1 = 20 £ 11 spanning tree

K2, 2 has 4 = 21 £ 21 spanning trees

K3, 2 has 12 = 31 £ 22 spanning trees

K3, 3 has 81 = 32 £ 32 spanning trees

Hence, we postulate that:

Km, n has mn¡1nm¡1 spanning trees.

EXERCISE 2E.3

1 There are other

(minor) variations.

) minimum is $26 million.

2 a

) minimum weight

= 5 + 2 + 1 + 4 + 3 + 1 + 2 + 1 + 2

= 21

b

) minimum weight = 2 + 4 + 6 + 3 + 2 + 4 + 5 + 3 + 5

= 34

3 a There is a weight

for every edge from

every node to every

other node.

c The minimum weight

= 5 + 4 + 7 + 8

= 24

b

4

A variation is EF instead of DG.

The minimum weight = 10 + 35 + 15 + 10 + 20 + 30

= 120

EXERCISE 2E.4

1 a

A B G D, weight 20

b

A F G C D, weight 15

A

B

C

D

E

F
G

H

J

K

4 5

5

3

1
5

2

6 8 7
9

3

2
3

6
11

3

5

3

7

5

2
6

1
4

4

43

5

3

2

1

2

3
2

5

4

1

A

B
C

D

E

F

GH

I

J

2

4
6

3

8

5
3

7

9

7
5

9
6

4 8

28

A

B

C D

E

10 10

5 8

9

7

104
8

7

A

B

35

G

D

C

F
E

30

45

50
10

15

15

40

70
50

20
10

A

B C

D

EF

G

4

6

13

5

6

11

8

2 8
14

114

4 10

20

17 1610 11

0
8
6

A

B C

D

EF

G

6

9

3

10

4

4

9

2 5
9

53

6 15

16 15

84

0
9
7

12
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WORKED SOLUTIONS 217

2

A H K F E, 10 hours

3 a

A B E G or A B E F G,

both weight 23

b

A H K G, weight 10

EXERCISE 2F

1 Vertices A and C have odd degrees.

) not Eulerian, and so we have to travel between A and C twice.

The sum of the lengths of all the roads is 21 km, and the shortest

path from A to C is 3 km.

So, the shortest distance the snowplough must travel is 24 km.

2 a A, B, C, and D have odd degrees. Since the graph is complete,

exactly two sections must be repeated.

b Repeating AB and CD is 6 + 5 = 11 km

Repeating AC and BD is 7 + 4 = 11 km

Repeating AD and BC via D is 9 + 9 = 18 km

The sum of the lengths of the paths is 43 km.

) the shortest distance to be travelled is 54 km, repeating

either AB and CD or AC and BD.
An example route is:
A B D C A B C D A

c Repeating AB and CD is 4 + 7 = 11 hours

Repeating AC and BD is 4 + 3 = 7 hours

Repeating AD and BC is 6 + 6 = 12 hours

The sum of the times of all edges is 30 hours.

) the shortest total time is 37 hours, repeating AC and BD.

An example route is:

A C B D C A D B A

3 a i Vertices B, F, G, and H have odd degrees.

) the graph is not Eulerian.

ii Repeating BF and GH has smallest distance

7 + 2 = 9 units

Repeating BG and FH has smallest distance

5 + 3 = 8 units

Repeating BH and FG has smallest distance

4 + 5 = 9 units

The sum of the distances of all the edges is 55 units.

) the shortest distance to be travelled is

55 + 8 = 63 units, travelling BG and FH twice.

b A possible route is:

A B C D E C H E F H

B A G F H G A

4 The vertices with odd degrees are A, D, E, and I.

Repeating AD and EI has smallest distance

4 + 8 = 12 units

Repeating AE and DI has smallest distance

7 + 8 = 15 units

Repeating AI and DE has smallest distance

9 + 5 = 14 units

) Peter should repeat AD (via B) and EI (via F) to walk

59 + 12 = 71 units.

An example route is:

A B C D B D F E C G E

F G I H F I F B A

5 a AB and CD, AC and BD, AD and BC.

b Repeating AB and CD has smallest distance

3:5 + 6 = 9:5 km

Repeating AC and BD has smallest distance

6 + 5:5 = 11:5 km

Repeating AD and BC has smallest distance

5 + 5 = 10 km

The sum of the distances of all the roads is 32:5 km.
) the shortest distance to be travelled is

32:5 + 9:5 = 42 km, travelling AB (via E) and

CD twice.
This can be achieved by starting at any vertex.

An example route starting at E is:

E A B E A D C B E D

C E

6 The vertices with odd degrees are C, D, E, and F.

Repeating CD and EF has smallest cost

1:3 + 1:5 = 2:8 ten thousand dollars

Repeating CE and DF has smallest cost

2:3 + 2:6 = 4:9 ten thousand dollars

Repeating CF and DE has smallest cost

1:4 + 1:1 = 2:5 ten thousand dollars

The sum of the costs for all routes is 13:6 ten thousand $s.

) the lowest cost solution is to travel CF (via B) and DE twice,

and this costs $136 000 + $25 000 = $161 000.

An example route is:

A B F G D E F B E D C

B C A

A

B

C
D

E

F

G

6
8

3
12

5 4

9

13

9

3

6 19

25 23
0

15
14

123

A

B

C

D

E

F
G

H

J K

4 5

5

3

1
5

2

6
8 7

9

3

2

3
6

11

3

5

3

13 12 10

9

10

7
7

2

0

6

6 5 4

A

B

C

D

E

F

GH

J K
7

9

7

5

8

6

10

12

4

3

3

8

4

6

4

4
4

6

2

16
12

6

10

113
0

7

7

10

12
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218 WORKED SOLUTIONS

EXERCISE 2G

1 a i BEDACB has weight 31.

) m 6 31

or BDEACB has weight 30.

) m 6 30

or BDECAB has weight 32.

) m 6 32

ii CAEDBC has weight 30.

) m 6 30

iii DEBCAD has weight 31.

) m 6 31

iv EDBCAE has weight 30.

) m 6 30

) the best upper bound is 30.

b i MST:

or

They both have weight 16.

wtfBEg = 6 and wtfBDg = 6

) m > 16 + 6 + 6

) m > 28

ii MST:

or

They both have weight 17.

wtfCAg = 5 and wtfCEg = 7

) m > 17 + 5 + 7

) m > 29

iii MST:

or

They both have weight 18.

wtfDEg = 4 and wtfDBg = 6

) m > 18 + 4 + 6

) m > 28

iv MST:

or

They both have weight 19.

wtfEDg = 4 and wtfEBg = 6

) m > 19 + 4 + 6

) m > 29

) the best lower bound is m > 29.

2 a minimum spanning tree has

weight 130
) upper bound is 260.

) m 6 260

b SPQRS gives a Hamiltonian cycle of weight 130+86 = 216
) m 6 216

c Vertex

deleted
MST length

2 shortest

deleted edges
Total

) the best lower bound is m > 214.

d PSQRP has weight 224, ) m 6 224

e SPQRS is a Hamiltonian cycle of least weight 216.

3 a

Both minimum spanning trees have length 50
) upper bound is 100, and so m 6 100

A

B C

D

E

8

4

8

5

6

A

B C

D

E

8

4

5

6

7

A

B C

D

E

4

6

5

7

10

A

B C

D

E

8

4

5

6

7

A

B C

D

E

8

4

5

6

7

A

B C

D

E

8

4

8

5
6

A

C

D

E

5

7 4

B

A

C

D

E

5

4

7

B

A

C

D

E

4

B

7

6
A

C

D

E

4

B

7

6

A

C

D

E

5

B

7

6

A

C

D

E

B

7

6 5

A

C

D

E

5

B

8

6

A

C

D

E

B

65

8

P Q

RS

20

30

15

15

20
25

P Q

RS

32

55

43

86

65
84

P Q

RS

20 15

15

30
20

25

P 43 + 84 = 127 32, 55 214

Q 32 + 65 = 97 55, 43 195

R 55 + 32 = 87 43, 65 195

S 55 + 43 = 98 32, 84 214

magentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 IB HL OPT

Discrete Mathematics

Y:\HAESE\IB_HL_OPT-DM\IB_HL_OPT-DM_an\218IB_HL_OPT-DM_an.cdr Thursday, 20 February 2014 2:25:56 PM BRIAN



WORKED SOLUTIONS 219

b QRSPQ gives a Hamiltonian cycle of weight 50 + 30 = 80
) m 6 80

c Vertex

deleted

MST

length

2 shortest

deleted edges
Total

P 30 20, 20 70

) the greatest lower bound obtained is 75
) m > 75

d PSRQP has weight 80, ) m 6 80

or PRSQP has weight 90, ) m 6 90

or PRQSP has weight 80, ) m 6 80

e PSRQP and PRQSP are both Hamiltonian cycles of minimum

weight 80.

4 a Minimum spanning tree

has length 32.

) upper bound is 64.

) m 6 64

b We find, for example, a Hamiltonian cycle PQTSRP of length

7 + 9 + 10 + 9 + 8 = 43
) new upper bound = 43
) m 6 43

c Vertex

deleted

MST

length

2 shortest

deleted edges
Total

P 25 7, 8 40

Q 27 7, 7 41

R 26 7, 8 41

S 23 9, 10 42

T 23 9, 10 42

The greatest lower bound obtained is 42
) m > 42

d PRQTSP has a weight of 45, ) m 6 45

e The Hamiltonian cycle PQTSRP has the minimum possible

weight 43.

5 a With A removed

MST is:

) m > 4 + 5 + 7 + wtfAEg+ wtfABg
) m > 16 + 7 + 8

) m > 31

With B removed

MST is:

) m > 4 + 5 + 7 + wtfBEg+ wtfBAg
) m > 16 + 7 + 8

) m > 31

With C removed

MST is:

) m > 4 + 7 + 7 + wtfCEg+ wtfCDg
) m > 18 + 5 + 8

) m > 31

With D removed

MST is:

) m > 5 + 7 + 7 + wtfDEg+ wtfDCg
) m > 19 + 4 + 8

) m > 31

With E removed

MST is:

) m > 8 + 8 + 9 + wtfEDg+ wtfECg
) m > 25 + 4 + 5

) m > 34

) the best lower bound is m > 34.

b The Hamiltonian cycle is AEDCBA with

weight 7 + 4 + 8 + 9 + 8 = 36
) m 6 36

c i Town E, as the roads between E and the other towns are

the shortest on the graph.

ii EDCBAE has weight 36
) m 6 36

P Q

R

ST

12

7
8 7

9

10

13
9

11
12

E
CD

A B

7

4 5

E
CD

A B

7

4 5

8
E

CD

A B8

9

E
CD

A B

77

5

E
CD

A B

77

4

A B

C

DE

F

16

8 1010
13

1112
7

7
6

9

49 5
7

Q 35 15, 25 75

R 45 15, 15 75

S 35 15, 20 70

6

AEDCFBA is the cycle using the nearest neighbour algorithm,

which has weight 7 + 6 + 4 + 9 + 10 + 16 = 52

7 a T
244

B
247

P
212

O
297

D
192

L
59

S
309

M
1067

C
996

T
) the Hamiltonian cycle is TBPODLSMCT with total

distance 3623 km.

b C
421

O
212

P
247

B
244

T
405

M
309

S
59

L
192

D
543

C
) the Hamiltonian cycle is COPBTMSLDC with total

distance 2632 km.

c It makes no difference. The cycles given in a and b are

not necessarily optimal, and any cycle starting and ending in

Calais could also be travelled starting and ending in Toulouse.
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220 WORKED SOLUTIONS

REVIEW SET A

1 Proof: (By the Principle of Mathematical Induction)

Pn is that “7n + 3n + 2 is divisible by 4” for all n 2 N .

(1) If n = 0, 70 +30 +2 = 1+1+2 = 4 and as 4 = 1(4),

P0 is true.

(2) If Pk is true, then 7k + 3k + 2 = 4A, A 2 Z .... (¤ )

Now 7k+1 + 3k+1 + 2

= 7(7k) + 3(3k) + 2

= 7(4A¡ 3k ¡ 2) + 3(3k) + 2 fusing ¤ g
= 28A¡ 7(3k)¡ 14 + 3(3k) + 2

= 28A¡ 4(3k)¡ 12

= 4(7A¡ 3k ¡ 3) where 7A¡ 3k ¡ 3 2 Z

) 7k+1 + 3k+1 + 2 is divisible by 4.

Thus, P0 is true, and Pk+1 is true whenever Pk is true.

) Pn is true for all n 2 N .

2 a0 = 1 and an+1 =
n + 2

n + 1
an for all n 2 N .

) an =
n + 1

n
an¡1

=
n + 1

n
£ n

n ¡ 1
an¡2

=
n + 1

n
£ n

n ¡ 1
£ n ¡ 1

n ¡ 2
£ ::::£ 2

1
a0

= (n+ 1)1

= n+ 1

) closed form solution is an = n+ 1, n 2 N .

For n = 0, a0 = 0 + 1 = 1 X

If ak = k + 1

ak+1 =
k + 2

k + 1
ak

=
k + 2

k + 1
(k + 1)

= k + 2

= (k + 1) + 1

which is of the required form.

) by the principle of (weak) induction, an = n+ 1

for all n 2 N .

3 a0 = 3, an = 4an¡1 ¡ 8, n > 1

a a0 = 3 a1 = 4a0 ¡ 8 a2 = 4a1 ¡ 8

= 4(3)¡ 8 = 4(4)¡ 8

= 4 = 8

a3 = 4a2 ¡ 8 a4 = 4a3 ¡ 8

= 4(8)¡ 8 = 4(24)¡ 8

= 24 = 88

b inhomogeneous with constant coefficient r 6= 1

) an = rnc+ b

³
rn ¡ 1

r ¡ 1

´
where c = 3, r = 4, b = ¡8

) an = 4n £ 3¡ 8

³
4n ¡ 1

4 ¡ 1

´
= 4n(3)¡ 8

3
(4n ¡ 1)

= 4n(3¡ 8
3
) + 8

3

= 4n( 1
3
) + 8

3

) an =
4n + 8

3
for all n 2 N .

For n = 0, a0 =
40 + 8

3
=

9

3
= 3 X

If ak =
4k + 8

3

then ak+1 = 4ak ¡ 8

= 4

µ
4k + 8

3

¶
¡ 8

=
4k+1 + 32

3
¡ 8

=
4k+1 + 32¡ 24

3

=
4k+1 + 8

3
which is of the required form.

) by the principle of (weak) induction, an =
4n + 8

3
for all n 2 N .

4 a i a1 = 0:978a0 grams

ii a2 =
.
.
.

0:978a1 = 0:9782a0

a5 = 0:9785a0 grams

b an = 0:978an¡1 and a0 = a0
homogeneous with constant coefficients

) an = rnc where c = a0, r = 0:978

) an = 0:978na0, n 2 N .

For n = 0, a0 = 0:9780a0 = a0 X

If ak = 0:978ka0
then ak+1 = 0:978ak

= 0:978(0:978)ka0

= (0:978)k+1a0

which is of the required form.

) by the principle of (weak) induction,

an = 0:978na0, n 2 N .

c a10 = 1:7

) 0:97810a0 = 1:7

) a0 =
1:7

0:97810

) a0 ¼ 2:12

) an initial mass of ¼ 2:12 g would be necessary.

5 a an = 4an¡1 ¡ 3an¡2 for n > 2, n 2 Z with a0 = 1,

a1 = ¡1 has characteristic equation

¸2 ¡ 4¸+ 3 = 0

) (¸¡ 1)(¸¡ 3) = 0

) ¸ = 1 or 3, distinct real roots

) the general solution is an = c11n + c23n, n 2 N .

Using the initial conditions:

a0 = 1 ) c1 + c2 = 1 .... (1)

and a1 = ¡1 ) c1 + 3c2 = ¡1 .... (2)

Solving (1) and (2) gives c1 = 2 and c2 = ¡1
) an = 2¡ 3n, n 2 N .

b an = 4an¡1¡4an¡2, n > 2, n 2 Z , a0 = 1, a1 = ¡1

has characteristic equation

¸2 ¡ 4¸+ 4 = 0

) (¸¡ 2)2 = 0

) ¸ = 2, a repeated root

) the general solution is an = (c1 + nc2)2n, n 2 N .

1
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WORKED SOLUTIONS 221

Using the initial conditions:

a0 = 1 ) c12
0 = 1 ) c1 = 1

and a1 = ¡1 ) (c1 + c2)2 = ¡1 ) c1 + c2 = ¡ 1
2

) c1 = 1 and c2 = ¡ 3
2

) an =

³
1¡ 3n

2

´
2n, n 2 N .

That is, an = (2¡ 3n)2n¡1, n 2 N .

c an = 4an¡1 ¡ 5an¡2, n > 2, n 2 Z , a0 = 0, a1 = 1

has characteristic equation

¸2 ¡ 4¸+ 5 = 0

) ¸ =
4 §

p
16 ¡ 4(1)(5)

2
) ¸ = 2§ i, complex conjugate roots

) the general solution is

an = c1(2 + i)n + c2(2¡ i)n, n 2 N .

Using initial conditions:

a0 = 0 ) c1 + c2 = 0 .... (1)

and a1 = 1 ) c1(2 + i) + c2(2¡ i) = 1

) 2(c1 + c2) + i(c1 ¡ c2) = 1 .... (2)

Substituting (1) into (2) gives i(c1 ¡ c2) = 1

) c1 ¡ c2 =
1

i
£ i

i
= ¡i

c1 ¡ c2 = ¡i

c1 + c2 = 0

Adding, 2c1 = ¡i

c1 = ¡ i

2
and c2 =

i

2

) an = ¡ i

2
(2 + i)n +

i

2
(2¡ i)n

= ¡ i

2
[(2 + i)n ¡ (2¡ i)n]

r =
p
5, µ = arctan( 1

2
)

) an = ¡ i

2
[(
p
5 cis µ)n ¡ (

p
5 cis (¡µ))n]

= ¡ i

2
[5

n

2 cisnµ ¡ 5
n

2 cis (¡nµ)]

= ¡ i

2
[5

n

2 (cis (nµ)¡ cis (¡nµ))]

= ¡ i

2
5

n

2 [cosnµ + i sinnµ ¡ [cosnµ ¡ i sinnµ]]

= ¡ i

2
5

n

2 [2i sinnµ]

= 5
n

2 sinnµ where µ = arctan( 1
2
)

) an = 5
n

2 sin(n arctan( 1
2
))

6 Instead of showing 3 j a2 + b2 ) 3 j a and 3 j b, we will

prove the contrapositive 3 j=a and 3 j=b ) 3 j= a2 + b2.

If 3 j= a,

then a = 3p+ 1 or a = 3p+ 2

) a2 = 9p2 + 6p+ 1 or a2 = 9p2 + 12p+ 4

) a2 = 3(3p2 + 2p) + 1 or a2 = 3(3p2 + 4p+ 1) + 1

Similarly, 3 j= b ) b2 = 3(3q2 + 2q) + 1 or

b2 = 3(3q2 + 4q + 1) + 1

If 3 j= a and 3 j= b,

then a2 + b2 = 3(3p2 + 2p) + 1 + 3(3q2 + 2q) + 1,

3(3p2 + 2p) + 1 + 3(3q2 + 4q + 1) + 1,

3(3p2 + 4p+ 1) + 1 + 3(3q2 + 2q) + 1, or

3(3p2 + 4p+ 1) + 1 + 3(3q2 + 4q + 1) + 1

) a2 + b2 = 3(3p2 + 2p+ 3q2 + 2q) + 2,

3(3p2 + 2p+ 3q2 + 4q + 1) + 2,

3(3p2 + 4p+ 3q2 + 2q + 1) + 2, or

3(3p2 + 4p+ 3q2 + 4q + 2) + 2

) a2 + b2 = 3k + 2 where k 2 Z

) 3 j= a2 + b2

Hence 3 j= a and 3 j= b ) 3 j= a2 + b2, and therefore

3 j a2 + b2 ) 3 j a and 3 j b. fcontrapositiveg
7 a 6m+ 5 = 6m+ 3 + 2, m 2 Z

= 3(2m+ 1) + 2 where 2m+ 1 2 Z

= 3n+ 2 where n 2 Z

b 32 = 3(10) + 2 has form 3n+ 2, n 2 Z

but 32 = 6(5) + 2 is not in the form 6m+ 5.

8 a 1445

= 1£ 52 + 4£ 5 + 4

= 25 + 20 + 4

= 4910

2 49 r

2 24 1

2 12 0

2 6 0

2 3 0

1 1

) 4910 = 110 0012

b 8 49 r

6 1 ) 1445 = 618

9 In any set of 5 consecutive integers, one of them must be divisible

by 5 and one of them must be divisible by 3.

Also at least one of them is divisible by 2 and another by 4

) P is divisible by 2£ 4£ 3£ 5

) P is divisible by 120.

10 a 552 = 2£ 208 + 136

208 = 1£ 136 + 72

136 = 1£ 72 + 64

72 = 1£ 64 + 8

64 = 8£ 8

) gcd(552, 208) = 8

b 8 = 72¡ 1£ 64

= 72¡ (136¡ 72)

= ¡136 + 2£ 72

= ¡136 + 2(208¡ 136)

= 2£ 208¡ 3£ 136

= 2£ 208¡ 3(552¡ 2£ 208)

= 2£ 208¡ 3£ 552 + 6£ 208

= ¡3£ 552 + 8£ 208

) m = ¡3 and n = ¡8

11 a m = (n+ 1)! + 2, n 2 Z +, n > 2

) m = (n+ 1)n(n¡ 1)::::£ 4£ 3£ 2£ 1 + 2

) m+ 1 = (n+ 1)n(n¡ 1)::::£ 4£ 3£ 2£ 1 + 3

) m+ 1 = 3[(n+ 1)n(n¡ 1)::::£ 4£ 2£ 1] + 3

) m+ 1 = 3[(n+ 1)n(n¡ 1)::::£ 4£ 2£ 1 + 1]

) 3 j m+ 1

µ

R

I

-µ

2 + i

2 - i
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222 WORKED SOLUTIONS

Also (n+ 1)! is even for n > 2

) (n+ 1)! + 2 is even.

b m = (n+ 2)! + 2, n 2 Z +, n > 3

) m+ 1 = (n+ 2)! + 3

= (n+ 2)(n+ 1)n::::£ 4£ 3£ 2£ 1 + 3

= 3[(n+ 2)(n+ 1)n::::£ 4£ 2£ 1 + 1]

) 3 j m+ 1

and m+ 2 = (n+ 2)! + 4

= 4[(n+ 2)(n+ 1)::::£ 5£ 3£ 2£ 1 + 1]

) 4 j m+ 2

and (n+ 2)! is even for n > 3

) m = (n+ 2)! + 2 is even.

c As in a, b

m = (n + 3)! + 2, (n+ 4)! + 2, ...., (n+ n)! + 2 are

composites

) m = (n + 1)! + 2, (n + 2)! + 2, ...., (n + n)! + 2

are a sequence of n numbers which are all composite.

12 a 5 1040
2 208

2 104

2 52

2 26

13

) 1040 = 24 £ 51 £ 131

b 5 18 360
2 3672

2 1836

2 918

3 459

3 153

3 51

17

) 18 360

= 23 £ 33 £ 51 £ 171

c 5 19 845
3 3969

3 1323

3 441

3 147

7 49

7 ) 19 845 = 34 £ 51 £ 72

13 a 2312 (mod 5)

´ 312 (mod 5)

´ (34)3 (mod 5)

´ 813 (mod 5)

´ 13 (mod 5)

´ 1 (mod 5)

b
30P

k=1

k! (mod 20)

´ 1! + 2! + 3! + 4! (mod 20)

f5! = 120 ) 20 j 5! Hence 20 j 6!, 20 j 7!, etc.g
´ 1 + 2 + 6 + 24 (mod 20)

´ 9 + 4 (mod 20)

´ 13 (mod 20)

14 Any integer must have one of these forms:

6n, 6n+ 1, 6n+ 2, 6n+ 3, 6n+ 4, 6n+ 5

Thus any prime p > 5 must have form 6n + 1 or 6n + 5

fthe other forms are compositeg
Thus p2 ¡ 1 = (6n+ 1)2 or (6n+ 5)2 ¡ 1

) p2 ¡ 1 = 36n2 + 12n or 36n2 + 60n+ 24

) p2 ¡ 1 = 12(3n2 + n) or 12(3n2 + 5n+ 2)

where 3n2 + n, 3n2 + 5n+ 2 2 Z

) 12 j p2 ¡ 1

15 Let e be a common divisor of a and c

) c = ke for some k 2 Z .

) bc = (bk)e and so e j bc.

So, e is a common divisor of a and bc .... ( ¤ )

Now let f be a common divisor of a and bc

) a = mf and bc = nf for some m, n 2 Z .

Since gcd(a, b) = 1, ax+ by = 1 for x, y 2 Z

) cax+ cby = c

) c(mf)x+ (nf)y = c

) f(cmx+ ny) = c and so f j c
So, f is a common divisor of a and c .... ( ¤¤ )

From ( ¤ ) and (¤¤ ), gcd(a, c) = gcd(a, bc).

16 a (bba) = 100b+ 10b+ a = 110b+ a
If the sum of the digits is divisible by 12 then 2b+a = 12k

for k 2 Z
) (bba) = 110b+ 12k ¡ 2b

= 108b+ 12k

= 12(9b+ k) where 9b+ k 2 Z

) (bba) is divisible by 12 also.

b (bab) = 100b+ 10a+ b = 10a+ 101b

If k j (bab) and k j a+ 2b, k 2 Z , 1 < k < 10
then 10a+ 101b = mk and a+ 2b = nk .... (1)

for some m, n 2 Z

) 10(nk ¡ 2b) + 101b = mk

) 10nk ¡ 20b+ 101b = mk

) k(m¡ 10n) = 81b

) k j 81 or k j b
) k = 3 or 9 or k is a divisor of b .... (2)

In (1), a+ 2b = nk

) a+ 2lk = nk, l 2 Z if k j b
) a = k(n¡ 2l)

) k j a
Thus in (2), k = 3 or 9 or k is a divisor of a and b.

17 57x ´ 20 (mod 13)

) 5x ´ 7 (mod 13)

As 13 is a prime there is a unique solution.

It is x ´ 4 (mod 13).

18 a If n 6´ 0 (mod 5) then n ´ §1, § 2 (mod 5)

) n2 ´ 1, 4 (mod 5)

) n2 ´ 1, ¡1 (mod 5)

) n2 ´ §1 (mod 5)

b n5 + 5n3 + 4n = n(n4 + 5n2 + 4)

´ §1(1 + 5(§1) + 4) (mod 5)

or § 2(1 + 5(§1) + 4) (mod 5)

= §1(10 or 0) (mod 5)

or § 2(10 or 0) (mod 5)

´ 0 (mod 5)

) n5 + 5n3 + 4n is divisible by 5 for all n 2 Z .

19 4 and 5 are relatively prime. X

M = 4£ 5 = 20

) M1 = 20
4

= 5 and M2 = 20
5

= 4

x1 is the solution to 5x1 ´ 1 (mod 4) ) x1 = 1

x2 is the solution to 4x2 ´ 1 (mod 5) ) x2 = 4
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WORKED SOLUTIONS 223

Now x ´ a1M1x1 + a2M2x2 (mod 20)

) x ´ 2£ 5£ 1 + 4£ 4£ 4 (mod 20)

) x ´ 14 (mod 20)

20 If
p
6 =

a

b
where a, b 2 Z+, gcd(a, b) = 1

then a2 = 6b2

) 6 j a2
) 6 j a
) a is even f2 j ag
) a = 2k say, k 2 Z

) 4k2 = 6b2

) 3b2 = 2k2

) b2 is even

) b is also even

) a and b have 2 as a common factor, which is a contradiction

)
p
6 is irrational.

21 1187 + 3 (mod 17)

´ (1116)5 £ 117 + 3 (mod 17)

´ 15 £ (121)3 £ 11 + 3 (mod 17) fFLTg
´ 23 £ 11 + 3 (mod 17) f119 = 17£ 7g
´ 91 (mod 17)

´ 6 (mod 17)

) when 1187 + 3 is divided by 17, the remainder is 6.

22 The garden can be divided into 9£ 11 = 99 squares which are

4 m by 4 m.

As there are 100 trees to be planted, by the PHP there exists at

least one 4 m by 4 m square containing at least two trees.

23 Every integer a ´ 0, 1, or 2 (mod 3)

Since there are 4 integers; x, y, z, and t and 3 residue classes

modulo 3, by the PHP there exists one residue containing at least

2 of these integers.

That is, at least two of x, y, z, t are congruent modulo 3.

Suppose they are x and y

) x ´ y (mod 3)

) x¡ y ´ 0 (mod 3)

) 3 j (x¡ y)

) the product (x¡ y)(x¡ z)(x¡ t)(y ¡ z)(y ¡ t)(z ¡ t)

´ 0 (mod 3)

24 a Only for m = 2 b Only for m = 2

c Wm is never bipartite.

25
P

deg(V ) = 2e fHandshaking Lemmag
Now if the minimum degree of a vertex is m and the maximum

is M , then, mv 6 2e 6 Mv

) m 6
2e

v
6 M

26 The (n¡ 1) outer vertices of Wn form a cycle with (n¡ 1)

edges.

The centre vertex is joined to the outer vertices by (n¡1) edges.

) Wn has 2(n¡ 1) edges.

Kn has

³
n
2

´
=

n(n¡ 1)

2
edges

) the complement of Wn has
n(n ¡ 1)

2
¡ 2(n¡ 1) edges.

27 a i
0
BB@

0 0 1 0 0
0 0 1 0 0
1 1 0 1 1
0 0 1 0 0
0 0 1 0 0

1
CCA

ii Yes, K1, 4

b i
0
BB@

0 1 0 0 1
1 0 1 1 0
0 1 0 0 1
0 1 0 0 1
1 0 1 1 0

1
CCA

ii Yes, K2, 3

c i 0BBB@
0 1 1 0 0 0
1 0 1 0 0 1
1 1 0 1 1 0
0 0 1 0 0 1
0 0 1 0 0 1
0 1 0 1 1 0

1
CCCA

ii No

d i 0BBB@
0 1 0 0 1 0
1 0 1 1 0 1
0 1 0 0 1 0
0 1 0 0 1 0
1 0 1 1 0 1
0 1 0 0 1 0

1
CCCA

ii Yes, K2, 4

e i 0BBB@
0 1 0 1 1 0
1 0 1 0 0 0
0 1 0 1 0 1
1 0 1 0 1 0
1 0 0 1 0 1
0 0 1 0 1 0

1
CCCA

ii No

28 Suppose A and B are the given

(fixed) vertices.

a Any path from A to B (or B

to A) must go through C, D,

or E for path length 2.

) the number of paths is 3.

b One such path is ACDB, so we need to choose any two of

C, D, E and this can be done in 3£ 2 = 6 ways.

) 6 paths.

c One such path is ACDEB, so we need to choose from all

orderings of C, D, E and this can be done in

3£ 2£ 1 = 6 ways.

) 6 paths.

29 A simple graph is bipartite , each of its circuits is of even

length.

) if a bipartite graph has an odd number of vertices, it cannot

contain a circuit visiting every vertex.

) G cannot be Hamiltonian.

30 a If there are 28 edges, then there are 56 ends of edges.

) the sum of the degrees of the vertices is 56.

If there are m vertices of degree 3, and 12¡m vertices of

degree 4, then

3m+ 4(12¡m) = 56

) ¡m+ 48 = 56

) m = ¡8, which is impossible

Hence, no such graphs exist.

b Using the same argument as in a, suppose there are m vertices

of degree 5 and 12¡m vertices of degree 6.

V3

V1 V2 V4 V5

V3V1

V2

V4

V5

V3V1

V2

V4

V5

V6

B

C

DE

A

magentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 IB HL OPT

Discrete Mathematics

Y:\HAESE\IB_HL_OPT-DM\IB_HL_OPT-DM_an\223IB_HL_OPT-DM_an.cdr Thursday, 20 February 2014 1:04:25 PM BRIAN



224 WORKED SOLUTIONS

) 5m+ 6(12¡m) = 56

) ¡m+ 72 = 56

) m = 16

which is impossible as there would be 12¡16 = ¡4 vertices

of degree 6.

Hence, no such graphs exist.

31 If the shortest cycle has length 5, then each face has at least

5 edges.

)
P

deg(F ) > 5f

) 2e > 5f f
P

deg(F ) = 2eg
) f 6

2e

5

But e+ 2 = v + f fEuler’s formulag
) e+ 2 6 v + 2

5
e

) 3
5
e 6 v ¡ 2

) 3e 6 5v ¡ 10

) e 6
5v ¡ 10

3

32 Since the connected graph is planar,

e+ 2 = v + f fEuler’s formulag
Now if there are 8 vertices of degree 3, there are 24 ends of edges.

) e = 12

) 12 + 2 = 8 + f

) f = 6

That is, there are 6 faces.

33

34 For example, 4 edges are chosen in order:

TS, QR, TR, TP.

minimum weight

= 7 + 9 + 12 + 12

= 40

35 Using Dijkstra’s algorithm:

Minimum connector has length 19.

Either O A D E G H Y

or O A D E G I Y

36 Let m be the weight of the minimum weight Hamiltonian cycle

in the graph.

a Using Kruskal

minimum length

= 15 + 17 + 19

= 51

) upper bound is

102
) m 6 102

b For example, C
15

O
19

B
24

A
26

C gives an upper

bound of 84, ) m 6 84

c Vertex

deleted

MST

length

2 shortest

deleted edges
Total

A 34 17, 24 75

B 32 19, 24 75

C 36 15, 25 76

O 49 15, 17 81

) best lower bound is 81, ) m > 81.

d The Hamiltonian cycle O A B C O gives

minimum weight 81 units.
So, m = 81.

REVIEW SET B

1 Proof: (By the Principle of Mathematical Induction)

Pn is that “2n < n!” for n > 4, n 2 Z +

(1) If n = 4, 24 = 16 and 4! = 24 and as 16 < 24,

P4 is true.

(2) If Pk is true, then 2k < k!

) (k + 1)!¡ 2k+1

= (k + 1)k!¡ 2£ 2k

> (k + 1)2k ¡ 2£ 2k

> 2k(k ¡ 1)

> 0 fas 2k > 0, k ¡ 1 > 3g
) 2k+1 < (k + 1)!

Thus P4 is true, and Pk+1 is true whenever Pk is true.

) Pn is true for all n > 4, n 2 Z +.

2 a Lk+2 = Lk+1 + Lk with L1 = 1, L2 = 2, L3 = 3,

L4 = 5, L5 = 8, L6 = 13, L7 = 21, L8 = 34,

L9 = 55, L10 = 89

b If n = 1,
nP

k=1

Lk = L1 = 1 = 3¡ 2

If n = 2,
nP

k=1

Lk = L1 + L2 = 3 = 5¡ 2

If n = 3,
nP

k=1

Lk = L1 + L2 + L3 = 6 = 8¡ 2

If n = 4,
nP

k=1

Lk = 11 = 13¡ 2

If n = 5,
nP

k=1

Lk = 19 = 21¡ 2

P

Q

R

T

S

12

9

14

9

16

12

7

17

12

X
A

B

C
D

E

F G
H

I Y

3

2

4

3

5

2
3

6
5

1

4

2

3

6

0
2

7

83

5

10
14

17 19

15

A

C

B

O

17

15

19

25

24

26

0 2 2 2 4

1 3 3

3 1 5

O
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WORKED SOLUTIONS 225

) we postulate that:
nP

k=1

Lk = Lk+2 ¡ 2

for all n 2 Z +.

c Proof: (By the Principle of Mathematical Induction)

Pn is that

“if L1 = 1, L2 = 2, and Lk+2 = Lk+1 + Lk,

then
nP

k=1

Lk = Lk+2 ¡ 2”.

(1) P1 is true. fshown in bg
(2) Suppose Pt is true.

)

t+1P
k=1

Lk =
tP

k=1

Lk + Lt+1

= Lt+2 ¡ 2 + Lt+1

= Lt+2 + Lt+1 ¡ 2

= Lt+3 ¡ 1

Thus P1 is true, and Pt+1 is true whenever Pt is true.

) Pn is true for all n 2 Z+.

3 a a0 = 4000

a1 = 4000£
³
1 +

0:05

12

´
+ 100

=

³
1205

1200

´
£ a0 + 100

¼ 4116:67

a2 =

³
1205

1200

´
£ a1 + 100

¼ 4233:82

a3 =

³
1205

1200

´
£ a2 + 100

¼ 4351:46

b The recurrence relation is a0 = 4000, an = ran¡1+100,

n > 1 where r =
1205

1200

Thus an = rn4000 + 100

³
rn ¡ 1

r ¡ 1

´
fsummary tableg

c After 2:5 years, n = 30 months

a30 =

³
1205

1200

3́0

£ 4000 + 100

2
4³ 1205

1200

3́0
¡ 1³

1205

1200

´
¡ 1

3
5

¼ 7719:92

) after 2:5 years it amounts to E7719:92

d If 10 000 =

³
1205

1200

ń

£ 4000 + 100

"³
1205

1200

ń

¡ 1³
1205

1200

´
¡ 1

#
then n ¼ 46:69 ftechnologyg
) it will take 47 months, or 3 years and 11 months, to reach

E10 000.

4 an ¡ 3an¡1 + 3an¡2 ¡ an¡3 = 0, n > 3

) an = 3an¡1 ¡ 3an¡2 + an¡3,

where a0 = a1 = 0, a2 = 2

a a3 = 3a2 ¡ 3a1 + a0

= 3£ 2¡ 3£ 0 + 0

= 6

a4 = 3a3 ¡ 3a2 + a1

= 3£ 6¡ 3£ 2 + 0

= 12

a5 = 3a4 ¡ 3a3 + a2

= 3£ 12¡ 3£ 6 + 2

= 20

a6 = 3a5 ¡ 3a4 + a3

= 3£ 20¡ 3£ 12 + 6

= 30

b a0 = 0 = ¡1£ 0

a1 = 0 = 0£ 1

a2 = 2 = 1£ 2

a3 = 6 = 2£ 3

a4 = 12 = 3£ 4

a5 = 20 = 4£ 5

a6 = 30 = 5£ 6

) we conjecture that an = n(n¡ 1), n 2 N .

c From b, a0 = 0(¡1), a1 = 1(0), and a2 = 2(1) X

If the conjecture is true for r < k then

ak = 3ak¡1 ¡ 3ak¡2 + ak¡3

= 3(k ¡ 1)(k ¡ 2)¡ 3(k ¡ 2)(k ¡ 3)

+ (k ¡ 3)(k ¡ 4)

= 3(k2 + 3k + 2)¡ 3(k2 ¡ 5k + 6)

+ k2 ¡ 7k + 12

= 3k2 ¡ 9k + 6¡ 3k2 + 15k ¡ 18

+ k2 ¡ 7k + 12

= k2 ¡ k

= k(k ¡ 1)

) by the Principle of (strong) Mathematical Induction,

an = n(n¡ 1) for all n 2 N .

5 an+2 = 2an+1 ¡ 3an, n 2 N , a0 = a1 = 2

has characteristic equation

¸2 ¡ 2¸+ 3 = 0

) ¸ =
2 §

p
4 ¡ 4(1)(3)

2

) ¸ =
2 § 2

p
2i

2

) ¸ = 1§
p
2i

) an = c1(1 +
p
2i)n + c2(1¡p

2i)n

If n = 0, a0 = c1 + c2 = 2

If n = 1, a1 = c1(1 +
p
2i) + c2(1¡

p
2i) = 2

) (c1 + c2) + (c1 ¡ c2)
p
2i = 2

) (c1 ¡ c2)
p
2i = 0

) c1 = c2 = 1

) an = (1 +
p
2i)n + (1¡p

2i)n

Alternatively, using polar form with r =
p

12 + (
p
2)2 =

p
3

and µ = arctan(
p
2),

an = (
p
3)n(cisnµ + cis (¡nµ))

) an = 2(
p
3)n cos(nµ), n 2 N .

6 a has the form a = 3m or a = 3m + 1 or a = 3m + 2,

m 2 Z+

) a3 + 5a = a(a2 + 5) = 3m((3m)2 + 5)

= 3(9m3 + 5m)

or = (3m+ 1)((3m+ 1)2 + 5)

= (3m+ 1)(9m2 + 6m+ 6)

= (3m+ 1)3(3m2 + 2m+ 2)

0
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226 WORKED SOLUTIONS

or = (3m+ 2)((3m+ 2)2 + 5)

= (3m+ 2)(9m2 + 12m+ 9)

= (3m+ 2)3(3m2 + 4m+ 3)

So, 3 j a3 + 5a for all a 2 Z +.

7 We need to prove or disprove that 12 j n2 ) 12 j n
This is not true as 12 j 62 but 12 j= 6.

8 n has the form 4m, 4m+ 1, 4m+ 2, or 4m+ 3

) n2 ¡ 1 = (4m)2 ¡ 1

= 16m2 ¡ 1

= 4(4m2 ¡ 1) + 3

or = (4m+ 1)2 ¡ 1

= 16m2 + 8m

= 4(4m2 + 2m)

or = (4m+ 2)2 ¡ 1

= 16m2 + 16m+ 3

= 4(4m2 + 4m) + 3

or = (4m+ 3)2 ¡ 1

= 16m2 + 24m+ 8

= 4(4m2 + 6m+ 2)

) n2 ¡ 1 is divisible by 4, or is of the form 4k + 3.

9 a gcd(a+ b, a+ 2b)

= gcd(a+ 2b, a+ b)

= gcd(a+ 2b¡ (a+ b), a+ b)

= gcd(b, a+ b)

= gcd(a+ b, b)

= gcd(a+ b¡ b, b)

= gcd(a, b)

= 1

b gcd(a, b) = 1

Let d = gcd(2a+ b, a+ 2b)

) d = gcd(2a+ b¡ (a+ 2b), a+ 2b)

= gcd(a¡ b, a+ 2b)

= gcd(a+ 2b, a¡ b)

= gcd(a+ 2b¡ (a¡ b), a¡ b)

= gcd(3b, a¡ b) .... (1)

= gcd(3b+ 3(a¡ b), a¡ b)

= gcd(3a, a¡ b) .... (2)

From (1), (2): d j 3a and d j 3b
) d j 3 fas a, b are relatively primeg
) d = 1 or 3

10 31 = 17(1) + 14

17 = 14(1) + 3

14 = 3(4) + 2

3 = 2(1) + 1

) 1 = 3¡ 2

= 3¡ (14¡ 3(4))

= 5£ 3¡ 14

= 5(17¡ 14)¡ 14

= 5£ 17¡ 6£ 14

= 5£ 17¡ 6(31¡ 17)

= 11£ 17¡ 6£ 31

) x0 = 11, y0 = ¡6 is one solution, and gcd(17, 31) = 1.

) solutions are x = 11 + 31t, y = ¡6¡ 17t, t 2 Z .

11 a 12x¡ 15y = 42

) 4x¡ 5y = 14 where gcd(4, 5) = 1

One solution is x0 = 1, y0 = ¡2

) solutions are x = x0 + bt, y = y0 ¡ at

) x = 1¡ 5t, y = ¡2¡ 4t

b 32x+ 24y = 144

) 4x+ 3y = 18 where gcd(4, 3) = 1

One solution is x0 = 0, y0 = 6
) solutions are x = 3t, y = 6¡ 4t, t 2 Z .

c 18x+ 11y = 196 where gcd(18, 11) = 1

One solution is x0 = 6, y0 = 8 fby inspectiong
) solutions are x = 6 + 11t, y = 8¡ 18t, t 2 Z .

12 7

= 2 1

2

0 2

0

0 0

3

1 0

8

2 2

4

1 1

29

0 2

) 7 203 8429

= 21 020 010 221 1023

0 00 6 20

1 01 7 21

2 02 8 22

3 10

4 11

5 12

13 n5 ¡ n = n(n4 ¡ 1)

= n(n2 + 1)(n2 ¡ 1)

= (n¡ 1)n(n+ 1)(n2 + 1)

n(n+ 1) is the product of 2 consecutive integers one of which

is even

) 2 j n(n+ 1) .... (1)

(n¡ 1)n(n+1) is the product of 3 consecutive integers one of

which is a multiple of 3

) 3 j (n¡ 1)n(n+ 1) .... (2)

Now n ´ 0, 1, 2, 3, 4 (mod 5)

) n¡ 1 ´ 4, 0, 1, 2, 3 (mod 5)

n+ 1 ´ 1, 2, 3, 4, 0 (mod 5)

n2 + 1 ´ 1, 2, 0, 0, 2 (mod 5)

) (n¡ 1)n(n+ 1)(n2 + 1) ´ 0 (mod 5)

) 5 j (n¡ 1)n(n+ 1)(n2 + 1) .... (3)

From (1), (2), and (3), 2£ 3£ 5 j (n¡ 1)n(n+ 1)(n2 + 1)

) 30 j n5 ¡ n for all n 2 Z+.

14 22x ´ 41 (mod 17) has gcd(22, 17) = 1 and 1 j 41,

) it has a unique solution.

22x ´ 41 (mod 17)

) 5x ´ 7 (mod 17)

) x = 15

15 n ´ 3 (mod 19) and n ´ 2 (mod 11)

19 and 11 are relatively prime X

M = 19£ 11 = 209

) M1 = 11 and M2 = 19

Now 11x1 ´ 1 (mod 19) ) x1 = 7

19x2 ´ 1 (mod 11) ) x2 = 7

) x ´ (3)(11)(7) + (2)(19)(7) (mod 209)

) x ´ 497 (mod 209)

) x ´ 79 (mod 209)

So, the smallest positive n is n = 79.

16 2 j a ) a ´ 0 (mod 2)

3 j a+ 2 ) a+ 2 ´ 0 (mod 3)

5 j a+ 3 ) a+ 3 ´ 0 (mod 5)

7 j a+ 4 ) a+ 4 ´ 0 (mod 7)
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WORKED SOLUTIONS 227

So, a ´ 0 (mod 2), a ´ 1 (mod 3), a ´ 2 (mod 5),

a ´ 3 (mod 7)

2, 3, 5, and 7 are relatively prime and M = 2£3£5£7 = 210

) M1 = 105, M2 = 70, M3 = 42, M4 = 30

Now 105x1 ´ 1 (mod 2) ) x1 = 1

70x2 ´ 1 (mod 3) ) x2 = 1

42x3 ´ 1 (mod 5) ) x3 = 3

30x4 ´ 1 (mod 7) ) x4 = 4

Now x ´ 0 + (1)(70)(1) + (2)(42)(3) + (3)(30)(4) (mod 210)

) x ´ 682 (mod 210)

) x ´ 52 (mod 210)

) the smallest a > 2 is a = 52.

17 435(47)¡ 50 (mod 3)

´ 135(2)¡ 2 (mod 3)

´ 2¡ 2 (mod 3)

´ 0 (mod 3)

) 435(47)¡ 50 is divisible by 3.

18 Statement: a2 ´ b2 (modn) ) a ´ b (modn)

a 42 ´ 22 (mod 12) 6) 4 ´ 2 (mod 12)
) the statement is false.

b The converse is true.
Proof:

If a ´ b (modn)

) a = b+ kn for some k 2 Z

) a2 = (b+ kn)2 = b2 + 2bkn+ k2n2

) a2 = b2 + n(2bk + k2n)

) a2 ´ b2 (modn) fas 2bk + k2n 2 Z g
c 32 ´ 22 (mod 5) 6) 3 ´ 2 (mod 5)

) the statement is not true for n a prime.

19 If ab ´ 0 (modn)

) ab = kn for k 2 Z

So, if n = p, a prime

then p j a or p j b
thus a ´ 0 (mod p) or b ´ 0 (mod p)

That is, n would have to be prime.

20 Let S = n5 ¡ 37n3 + 36n

´ n5 + 3n3 (mod 4)

´ n3(n2 + 3) (mod 4)

But n ´ 0, 1, 2, 3 (mod 4)

) n3 ´ 03, 13, 23, 33 (mod 4)

) n3 ´ 0, 1, 0, 3 (mod 4)

and n2 + 3 ´ 3, 0, 3, 0 (mod 4)

) n3(n2 + 3) ´ 0 (mod 4)

) S ´ 0 (mod 4)

) n5 ¡ 37n3 + 36n is divisible by 4 for all n 2 Z+.

21

p¡1P
k=1

kp (mod p)

´ 1 + k + k2 + k3 + ::::+ kp¡1 (mod p)

´ 1 ¡ kp

1 ¡ k
(mod p) fsum of a geometric seriesg

´ 1 ¡ k

1 ¡ k
(mod p) fFLTg

´ 1 (mod p)

22 There are 4 suits in a pack of cards.

These are , , |, Ä. (pigeonholes)

) in a hand of 5 cards, at least two will be in the same suit.

23 We divide the unit square into

4 squares which are 1
2
£ 1

2
.

Since 9 points lie in the

unit square, one square must

contain at least 3 points. Let it

be the shaded one.

Cases:

(1) max. area = 1
2
£ 1

2
£ 1

2
= 1

8

(2)

(3) Any other 4

Area of blue 4 = 1
2
bh2

Area of red 4 = 1
2
bh1 = 1

8
fCase (2)g

where h2 < h1

) area of blue 4 < area of red 4
) area of blue 4 6 1

8

) we have a triangle formed by 3 points within the

1£ 1 square where the area is not more than 1
8

.

24 a Km has m vertices and

³
m
2

´
=

m(m¡ 1)

2
edges.

b Cm has m vertices and m edges.

c Wm has m vertices and 2(m¡ 1) edges.

d Km, n has m+ n vertices and mn edges.

25 Consider the following graph on 8 vertices corresponding to the

8 people present.

An edge between vertices corresponds to a handshake between

two people.

The 7 different answers Colin received correspond to the degrees

of 7 vertices.

Since no one shakes hands with their partner the maximum

deg(V) = 6

) the 7 degrees are: 0, 1, 2, 3, 4, 5, 6.

Qw

Qw

Qw Qw

Qw

Qw

Qw

Qw

Qw

Qw

h1

h2b

Colin

0

1

2
3

4

5

6

) A 6 1
8

max. area = 1
2
£ 1

2
£ 1

2
= 1

8

) A 6 1
8
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228 WORKED SOLUTIONS

6 must shake hands with everyone except 6 and 0.

) 6 and 0 must be partners.

5 must shake hands with everyone except 5, 0, and 1.

) 5 and 1 must be partners.

Continuing in this way until all vertices have correct degree, we

have

4 must partner 2, so Colin must partner 3.

) a 3 b 3

26 a 0@ 0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

1
A b

0
BB@

0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

1
CCA

c
0
BB@

0 0 1 1 1
0 0 1 1 1
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0

1
CCA

27 These are examples only.

a b

28 K3, 3

a 0

b For a path of length 3 between A and D, say, the path has

the form A V1 V2 D, where V1 is E or F, and

V2 is B or C.
So, there are 2£ 2 = 4 different paths.

c 0

29 a i m = n and m, n > 1.

ii m, n must both be even.

iii m = n, m, n > 1 and m, n both even.

b K2, 2

A C B D A is both a Hamiltonian cycle and

an Eulerian circuit.

30 For a simple connected graph to have as many edges as possible,

we consider the complete graphs Kn.

For n vertices, they have
n(n¡ 1)

2
edges.

Hence, we seek the lowest n such that
n(n ¡ 1)

2
> 500

) n(n¡ 1) > 1000

If n = 31, n(n¡ 1) = 930

If n = 32, n(n¡ 1) = 992

If n = 33, n(n¡ 1) = 1056

) the number of vertices must be > 33.

31 Since the graph is planar, e+ 2 = v + f . fEuler’s formulag
A 4-regular graph has all vertices of degree 4.

6 vertices of degree 4 ) 24 ends of edges

) 12 edges

Thus 12 + 2 = 6 + f

) f = 8

So, the graph has 8 faces.

32 G is connected planar and 3-regular. If G has order v, then the

sum of the degrees of its vertices is 3v, and so it has
3v

2
edges.

Using Euler’s formula, e+ 2 = f + v

)
3v

2
+ 2 = f + v

) f =
v

2
+ 2

Check: K4 has 4 vertices and 4 faces.

v

2
+ 2 =

4

2
+ 2 = 4 = f X

33

34

Shortest distance is 91 km, via the path shown.

35 There are 4 vertices with odd degrees: A, B, C, and D.

Repeating AB and CD has minimum length 10 + 13 = 23.

Repeating AC and BD has minimum length 25 + 24 = 49.

Repeating AD and BC has minimum length 22 + 15 = 37.

Thus, we repeat AB and CD. The sum of the length of all roads

is 113 ) the minimum distance = 113 + 23 = 136 units.

For example, this closed walk is used:

O A E B A B C E D C D O

36 a Use Kruskal.

b For example, B A C O D B

gives an upper bound of 46.

) m 6 46

Colin

0

1

2
3

4

5

6

8

10

13
11

6
13

3

7

20
18

O
A

B

C

D

A B C

D E F

A B

CD

4
3

2 1

O

1

2 1

2

2

2
1

A
B

25

18

16

19

21

32 10 38

13

9

12

2930
32

51

18

7

5
41

15

20 24

16

10

19

18

0

25 57 59

8367
16

18

46
58

55

73
96 91

minimum length = 26
) upper bound 52
) m 6 52
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WORKED SOLUTIONS 229

c Vertex

deleted

MST

length

2 shortest

deleted edges
Total

A 26 3, 8 37

B 16 10, 13 39

C 24 3, 7 34

D 20 6, 11 37

O 24 6, 7 37

) lower bound is 39
) m > 39

d A minimum weight Hamiltonian cycle is

O C A B D O with length 46 units

) m = 46

REVIEW SET C

1 an = an¡1 + n¡ 2 for n 2 Z+, a0 = 2

a a1 = a0 ¡ 1 a2 = a1 + 0 a3 = a2 + 1

= 2¡ 1 = 1 = 2

= 1

a4 = a3 + 2 a5 = a4 + 3

= 4 = 7

b an = an¡1 + n¡ 2

= (an¡2 + n¡ 3) + n¡ 2

=
.
.
.

an¡3 + (n¡ 4) + (n¡ 3) + (n¡ 2)

= a2 + 1 + 2 + 3 + ::::+ (n¡ 2)

= 1 +
(n ¡ 2)(n¡ 1)

2

=
2 + n2 ¡ 3n + 2

2

=
n2 ¡ 3n + 4

2

c For n = 0, a0 = 4
2
= 2 X

If ak =
k2 ¡ 3k + 4

2

then ak+1 =
k2 ¡ 3k + 4

2
+ k ¡ 1

=
k2 ¡ 3k + 4 + 2k ¡ 2

2

=
k2 ¡ k + 2

2

=
k2 + 2k + 1 ¡ 3k ¡ 3 + 4

2

=
(k + 1)2 ¡ 3(k + 1) + 4

2
) by the principle of (weak) induction,

an =
n2 ¡ 3n + 4

2
for all n 2 N .

d a20 =
202 ¡ 3(20) + 4

2
= 172

2 fn+1 =

¥
n

2P
k=0

³
n¡ k
k

´

) f2a+1 =

¥
2a

2P
k=0

³
2a¡ k

k

´

=
aP

k=0

³
2a¡ k

k

´
=

³
2a
0

´
+

³
2a¡ 1

1

´
+

³
2a¡ 2

2

´
+ ::::+

³
a
a

´
and f2a =

a¡1P
k=0

³
2a¡ 1¡ k

k

´
=

³
2a¡ 1

0

´
+

³
2a¡ 2

1

´
+

³
2a¡ 3

2

´
+ ::::+

³
a

a¡ 1

´
When a = 0, f1 =

³
0
0

´
= 1 X

When a = 1, f2 =

³
1
0

´
= 1 X

and f3 =

³
2
0

´
+

³
1
1

´
= 1 + 1 = 2 X

When a = 2, f4 =

³
3
0

´
+

³
2
1

´
= 1 + 2 = 3 X

and f5 =

³
4
0

´
+

³
3
1

´
+

³
2
2

´
= 1 + 3 + 1 = 5 X

Proof:

(By the Principle of Mathematical Induction (strong form))

Pn is that “fn+1 =

¥
n

2P
k=0

³
n¡ k
k

´
” for n > 0.

(1) We have seen that P0 and P1 are true.

(2) Case 1: k even

Assume Pr is true for all r 6 k.

Now fk+2 = f2a+2 for some a 2 Z fk eveng
= f2a+1 + f2a

=

³
2a
0

´
+

³
2a¡ 1

0

´
+

³
2a¡ 1

1

´
| {z }

+

³
2a¡ 2

1

´
+

³
2a¡ 2

2

´
| {z }

+

³
2a¡ 3

2

´
+

³
2a¡ 3

3

´
| {z }

+ ::::+

³
a

a¡ 1

´
+

³
a
a

´
| {z }

=

³
2a+ 1

0

´
+

³
2a
1

´
+

³
2a¡ 1

2

´
+

³
2a¡ 2

3

´
+ ::::+

³
a+ 1
a

´
which is of the required form.

Note:

³
2a+ 1

0

´
=

³
2a
0

´
= 1
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230 WORKED SOLUTIONS

Case 2: k odd
Assume Pr is true for all r 6 k.

Now fk+2 = f2a+1 for some a 2 Z fk oddg
= f2a + f2a¡1

=

³
2a¡ 1

0

´
+

³
2a¡ 2

0

´
+

³
2a¡ 2

1

´
| {z }

+

³
2a¡ 3

1

´
+

³
2a¡ 3

2

´
| {z }

+

³
2a¡ 4

2

´
+

³
2a¡ 4

3

´
| {z }+::::

+

³
a

a¡ 2

´
+

³
a

a¡ 1

´
| {z }+

³
a¡ 1
a¡ 1

´
=

³
2a
0

´
+

³
2a¡ 1

1

´
+

³
2a¡ 2

2

´
+

³
2a¡ 3

3

´
+ ::::+

³
a+ 1
a¡ 1

´
+

³
a
a

´
which is of the required form.

Note:

³
2a
0

´
=

³
2a¡ 1

0

´
= 1 and³

a
a

´
=

³
a¡ 1
a¡ 1

´
= 1

Thus P0 and P1 are true, and P0, P1, ...., Pk ) Pk+1 is true.

) Pn is true for all n 2 N .

3 a i a0 = 120 000

a1 =

³
1 +

0:049

12

´
a0 ¡ 1000

=

³
12:049

12

´
a0 ¡ 1000

= 119 490

a2 =

³
12:049

12

´
a1 ¡ 1000

¼ 118 977:92

a3 ¼
³
12:049

12

´
a2 ¡ 1000

¼ 118 463:74

ii an =

³
12:049

12

´
an¡1 ¡ 1000

a0 = 120000

iii an = ran¡1+b with a0 = c has closed form solution

an = rnc+ b

³
rn ¡ 1

r ¡ 1

´
, r 6= 1

) an =

³
12:049

12

ń

120 000¡1000

"³
12:049

12

ń

¡ 1³
12:049

12

´
¡ 1

#
,

n 2 N .

iv Loan will be repaid when an = 0

)

³
12:049

12

ń

120 000¡1000

"³
12:049

12

ń

¡ 1³
12:049

12

´
¡ 1

#
= 0

) n ¼ 165:237 ftechnologyg
) it will take 166 months or 13 years 10 months to

repay the loan.

v Total interest paid = total paid ¡ $120 000

¼ $165 237¡ $120 000

¼ $45 237

b i n = 10 years = 120 months

Now r120(120 000) + b

µ
r120 ¡ 1

r ¡ 1

¶
= 0

) b =
¡r120(120 000)(r ¡ 1)

r120 ¡ 1

fn = 120, r =
12:049

12
g

) b ¼ ¡1266:93

) the payment is $1266:93 per month.

ii Total interest paid ¼ $1266:93£ 120¡ $120 000

¼ $32 032

4 a0 = 1, an = nan¡1 + n!3n, n 2 Z +

a1 = a0 + 1!31

= 1 + 3

= 4

a2 = 2a1 + 2!32

= 2(4) + 2£ 9

= 26

a3 = 3a2 + 3!33

= 3(26) + 6£ 27

= 240

an = nan¡1 + n!3n

= n[(n¡ 1)an¡2 + (n¡ 1)!3n¡1] + n!3n

= n(n¡ 1)an¡2 + n!3n¡1 + n!3n

= n(n¡ 1)[(n¡ 2)an¡3 + (n¡ 2)!3n¡2] + (3n¡1 + 3n)n!

=
.
.
.

n(n¡ 1)(n¡ 2)an¡3 + n!(3n¡2 + 3n¡1 + 3n)

= n!a0 + n!(3n + 3n¡1 + 3n¡2 + ::::+ 32 + 3)

= n!(1 + 3 + 32 + ::::+ 3n)

= n!

µ
3n+1 ¡ 1

3 ¡ 1

¶
=

n!

2
(3n+1 ¡ 1)

Check: a0 = 1
2
(31 ¡ 1) = 1 X

a1 = 1
2
(32 ¡ 1) = 4 X

a2 = 2
2
(33 ¡ 1) = 26 X

a3 = 6
2
(34 ¡ 1) = 240 X

5 reds blues greens

a Let an = number of different lines of blocks with

length n units.

a1 = 1 (one red)

a2 = 2

a3 = 4

If the first block is red the remainder of the block

(n¡ 1 units) can be constructed in an¡1 ways.

If the first block is blue, the remainder of the block

(n¡ 2 units) can be constructed in an¡2 ways.

If the first block is green the remainder of the block

(n¡ 3 units) can be constructed in an¡3 ways.

,

, , ,
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WORKED SOLUTIONS 231

Thus an = an¡1 + an¡2 + an¡3 where a1 = 1,

a2 = 2, and a3 = 4 for all n > 3, n 2 Z+.
Check:

) a4 = 7 as predicted by a4 = a3 + a2 + a1 = 7 X

b a5 = 2 + 4 + 7 = 13

a6 = 4 + 7 + 13 = 24

a7 = 7 + 13 + 24 = 44

a8 = 13 + 24 + 44 = 81

a9 = 24 + 44 + 81 = 149

a10 = 44 + 81 + 149 = 274

) there are 274 different block arrangements of length

10 units.

6 If n2 is divisible by 5, then 5 j n2

) either 5 j n or 5 j n fEuclid’s Lemmag
) 5 j n and so n is divisible by 5.

7 a If n is even, n(7n2 ¡ 1) must be even.

If n is odd, n2 is odd

) 7n2 ¡ 1 is even

) n(7n2 ¡ 1) is even.

b n ´ 0, 1, or 2 (mod 3) for all n 2 Z

) n(7n2 ¡ 1) ´ 0(7£ 02 ¡ 1) (mod 3)

or 1(7£ 12 ¡ 1) (mod 3)

or 2(7£ 22 ¡ 1) (mod 3)

) n(7n2 ¡ 1) ´ 0, 6, or 54 (mod 3)

) n(7n2 ¡ 1) ´ 0 (mod 3)

) 3 j n(7n2 ¡ 1)

c From a and b, both 2 and 3 are factors of n(7n2 ¡ 1)

) 6 j n(7n2 ¡ 1).

d n ´ 0, 1, 2, 3, 4, or 5 (mod 6)

) n(7n2 ¡ 1) ´ 0(7£ 02 ¡ 1) (mod 6)

or 1(7£ 12 ¡ 1) (mod 6)

or 2(7£ 22 ¡ 1) (mod 6)

or 3(7£ 32 ¡ 1) (mod 6)

or 4(7£ 42 ¡ 1) (mod 6)

or 5(7£ 52 ¡ 1) (mod 6)

) n(7n2 ¡ 1) ´ 0, 6, 54, 186, 444, or 870 (mod 6)

´ 0 (mod 6)

f54 = 9£6, 186 = 31£6, 444 = 74£6, 870 = 145£6g
8 If 7 j p2 then 7 j p or 7 j p fEuclid’s Lemmag

Thus 7 j p2 ) 7 j p .... ( ¤ )

Suppose
p
7 is rational

)
p
7 =

p

q
where gcd(p, q) = 1, q 6= 0

) p2 = 7q2 .... ( ¤ ¤ )

) 7 j p2 fq2 2 Z +g
) 7 j p ffrom ¤ g

) p = 7k, k 2 Z+

) 49k2 = 7q2 ffrom ¤ ¤g
) q2 = 7k2

) 7 j q2 fk2 2 Z+g
) 7 j q ffrom ¤ g
Thus 7 j p and 7 j q which contradicts the fact that

gcd(p, q) = 1.

)
p
7 must be irrational.

9 d = gcd(378, 168)

Now 378 = 168(2) + 42

and 168 = 42(4) + 0

) d = gcd(378, 168) = 42

Now 42 = 378¡ 168(2)

) 42 = 378(1) + 168(¡2)

So, x = 1, y = ¡2

10 Let d = gcd(a, b)

) d j a and d j b and d > 1

) a = dr and b = ds for r, s 2 Z +

Consider m =
ab

d
.... ( ¤ )

) m =
drb

d
= bd and m =

ads

d
= as

) m is a positive common multiple of a and b .... (1)

Now let c be any positive integer multiple of both a and b.

) c = au and c = bv for u, v 2 Z + .... (2)

Since d = gcd(a, b), there exists x, y 2 Z such that

d = ax+ by

)
c

m
= c

³
d

ab

´
=

c(ax + by)

ab

)
c

m
=

³
c

b

´
x+

³
c

a

´
y

)
c

m
= vx+ uy ffrom (2)g

) c = (vx+ uy)m

) m j c fvx+ uy 2 Z g
) m 6 c

) m = lcm(a, b)

Thus lcm(a, b) =
ab

gcd(a, b)

) lcm(a, b) gcd(a, b) = ab

11 Let s = number of small statues bought,

m = number of medium statues bought,

l = number of large statues bought.

) s+m+ l = 50 .... (1)

and 40s+ 100m+ 250l = 11240

(1) £ ¡250 gives

¡250s¡ 250m¡ 250l = ¡12 500

40s+ 100m+ 250l = 11240

adding ¡210s¡ 150m = ¡1260

) 21s+ 15m = 126

First we notice, gcd(21, 15) = 3 and 3 j 126
) integer solutions exist.

Now 21 = 15(1) + 6

15 = 6(2) + 3

magentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 IB HL OPT

Discrete Mathematics

Y:\HAESE\IB_HL_OPT-DM\IB_HL_OPT-DM_an\231IB_HL_OPT-DM_an.cdr Friday, 21 February 2014 10:51:45 AM BRIAN



232 WORKED SOLUTIONS

Thus 3 = 15¡ 6(2)

) 3 = 15¡ (21¡ 15)£ 2

) 3 = ¡2£ 21 + 3£ 15

) 126 = ¡84£ 21 + 126£ 15

) one solution is s0 = ¡84, m0 = 126

Thus s = s0 + ( 15
3
)t, m = m0 ¡ ( 21

3
)t

) s = ¡84 + 5t, m = 126¡ 7t, t 2 Z

But s > 0 and m > 0

) ¡84 + 5t > 0 and 126¡ 7t > 0

) 5t > 84 and 7t 6 126

) t > 16:8 and t 6 18

) t = 17 or 18

Thus s = 1, m = 7 or s = 6, m = 0

) s = 1, m = 7, l = 42 or

s = 6, m = 0, l = 44

) buy 1 small, 7 medium, 42 large or

6 small, 0 medium, 44 large.

12 a By the Fundamental Theorem of Arithmetic,

a = p a1

1 p a2

2 p a3

3 ::::p
ak

k

) a3 = p 3a1

1 p 3a2

2 p 3a3

3 ::::p
3ak

k

So if p j a3 then p is one of the pi
where i = 1, 2, 3, ...., k

and as p 3
i

j a, then p3 j a3.

b Likewise if p j a3 then p is one of the pi and as all pi j a
then p j a.

13 If n = 1, LHS = 61 ´ 6 (mod 25)

RHS = 1 + 5 ´ 6 (mod 25) X

If 6k ´ 1 + 5k (mod 25),

then 6k+1 ¡ 1¡ 5(k + 1)

= 6(6k)¡ 1¡ 5k ¡ 5

´ 6(1 + 5k)¡ 5k ¡ 6 (mod 25)

´ 6 + 30k ¡ 5k ¡ 6 (mod 25)

´ 25k (mod 25)

´ 0 (mod 25)

) 6k+1 ´ 1 + 5(k + 1) (mod 25)

So, by induction, 6n ´ 1 + 5n (mod 25) for n 2 Z +.

14 165x ´ 105 (mod 51)

) 12x ´ 3 (mod 51) where gcd(3, 51) = 3

Thus 12x ´ 3 (mod 51) has 3 mutually incongruent solutions.

One solution is x0 = 13

The other solutions are 13 + 51
3

, 13 + 2( 51
3
)

) the 3 mutually incongruent solutions are: 13, 30, and 47.

15 An integer is divisible by 36 if it is divisible by both 4 and 9.

If N = 14 975 028 526 645 824 then

(1) N ends in 24 which is divisible by 4
) N is divisible by 4.

(2) N has digit sum = 78 where 9 j= 78
) N is not divisible by 9.

Thus N is not divisible by 36.

16 260 = 4 £ 5 £ 13 where 4, 5, and 13 are pairwise relatively

prime.

So, we need to solve:

19x ´ 99 (mod 4), 19x ´ 99 (mod 5), 19x ´ 99 (mod 13)

That is

3x ´ 3 (mod 4), 4x ´ 4 (mod 5), 6x ´ 8 (mod 13)

or x ´ 1 (mod 4), x ´ 1 (mod 5), x ´ 10 (mod 13)

We solve these using the Chinese Remainder Theorem.

M = 4£ 5£ 13 = 260

) M1 = 65, M2 = 52, M3 = 20

65x1 ´ 1 (mod 4) ) x1 = 1

52x2 ´ 1 (mod 5) ) x2 = 3

20x3 ´ 1 (mod 13) ) x3 = 2

) x ´ (1)(65)(1) + (1)(52)(3) + (10)(20)(2) (mod 260)

) x ´ 621 (mod 260)

) x ´ 101 (mod 260)

17 14x+ 17 ´ 27 (mod 6)

) 14x ´ 10 (mod 6)

) 2x ´ 4 (mod 6)

) x ´ 2 (mod 3)

) the solutions are x = 2, 5, 8, ....

18 32014

= (32)1007

= 91007

´ (¡1)1007 (mod 10)

´ ¡1 (mod 10)

´ 9 (mod 10)

) the units digit is 9.

19 m j n ) n = km for some k 2 Z where k > 1 as m < n

Now
Nn

Nm
=

1 + 10 + 102 + :::: + 10n¡1

1 + 10 + 102 + :::: + 10m¡1

=
10n ¡ 1

10 ¡ 1
£ 10 ¡ 1

10m ¡ 1
fsum of geometric seriesg

=
10km ¡ 1

10m ¡ 1

=
ak ¡ 1

a ¡ 1
for a = 10m

= 1 + a+ a2 + ::::+ ak¡1

which is an integer > 2

Thus Nn = ANm for A 2 Z +, A > 2

) Nm j Nn

20 a Let N = 2504 304
(1) The sum of digits = 18 which is divisible by 3

) N is divisible by 3.

(2) 7 j N , 7 j 250 430¡ 2(4)

, 7 j 250 422
, 7 j 25 042¡ 2(2)

, 7 j 25 038
, 7 j 2503¡ 2(8)

, 7 j 2487
, 7 j 248¡ 2(7)

, 7 j 234
, 7 j 23¡ 2(4)

, 7 j 15 which is not true

) N is not divisible by 7.
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WORKED SOLUTIONS 233

(3) Sum of digits in odd positions ¡ sum in even positions

= (2 + 0 + 3 + 4)¡ (5 + 4 + 0)

= 9¡ 9

= 0 which is divisible by 11

) N is divisible by 11.

(4) 13 j N , 13 j 250 430¡ 9(4)

, 13 j 250 394
, 13 j 25 039¡ 9(4)

, 13 j 25 003
, 13 j 2500¡ 9(3)

, 13 j 2473
, 13 j 247¡ 9(3)

, 13 j 220
, 13 j 22¡ 9(0)

, 13 j 22
which is not true

) N is not divisible by 13.

b Let N = 1703702
(1) Sum of digits = 20 which is not divisible by 3.

) N is not divisible by 3.

(2) 7 j N , 7 j 170 370¡ 2(2)

, 7 j 170 366
, 7 j 17 036¡ 2(6)

, 7 j 17 024
, 7 j 1702¡ 2(4)

, 7 j 1694
, 7 j 169¡ 2(4)

, 7 j 161
, 7 j 16¡ 2(1)

, 7 j 14
which is true

) N is divisible by 7.

(3) Sum of digits in odd positions ¡ sum in even positions

= (1 + 0 + 7 + 2)¡ (7 + 3 + 0)

= 0 which is divisible by 11

) N is divisible by 11.

(4) 13 j N , 13 j 170 370¡ 9(2)

, 13 j 170 352
, 13 j 17 035¡ 9(2)

, 13 j 17 017
, 13 j 1701¡ 9(7)

, 13 j 1638
, 13 j 163¡ 9(8)

, 13 j 91
which is true

) N is divisible by 13.

21 780 = (710)8

´ 18 (mod 11) fFLTg
´ 1 (mod 11)

) the last digit of 780 is 1 in base 11.

22 Split the first 100 positive integers into 50 groups of 2:

(1, 2), (3, 4), (5, 6), ...., (97, 98), (99, 100).

In selecting 51 integers, there must be at least one group with both

numbers selected fPHPg, and these numbers are consecutive.

23 A contains 215 ¡ 1 = 32 767 non-empty subsets.

The highest possible sum of the elements in a non-empty subset

is 199 + 198 + 197 + ::::+ 185 = 2880

So, there are 2880 possible sums of non-empty subsets.

Since 32 767 > 2880, by the PHP there are two distinct subsets

which have the same sum (lie in the same pigeonhole).

24 Suppose the graph has v vertices. The sum of the edges of G and

G0 is the number of edges of Kv .

) 17 + 11 =
v(v ¡ 1)

2
) v(v ¡ 1) = 56

) v2 ¡ v ¡ 56 = 0

) (v ¡ 8)(v + 7) = 0

) v = 8 fas v > 0g
) G has 8 vertices.

25 Since G is bipartite, it has two disjoint sets of vertices.

Suppose there are m vertices in one set and v ¡m vertices in

the other.

If G is simple, the total number of edges possible is

m(v ¡ m) = ¡m2 + mv, which is a quadratic in m whose

maximum occurs when m =
¡v

2(¡1)
=

v

2
.

) the maximum possible number of edges is
v

2
£ v

2
=

v2

4
,

that is, e 6
v2

4
.

Or, alternatively :

In Km, n , v = m+ n and e = mn

Now v2 ¡ 4e = m2 + 2mn+ n2 ¡ 4mn

= m2 ¡ 2mn+ n2

= (m¡ n)2

> 0 for all m, n 2 Z+

) v2 > 4e

) e 6
v2

4

26 a For example:

G0 contains

where V1V3V6 is a 3-cycle

b For such a group of 6 people, we define a graph on 6 vertices

where each person corresponds to a distinct vertex.

Two vertices are adjacent , the two people are known to

each other.
By a, such a graph either contains a 3-cycle or has 3 mutually

non-adjacent vertices.

That is, either there is a group of 3 people who are mutually

known to each other or the 3 are mutual strangers.

27 Suppose there are n vertices, each of different degree.

For the graph to be simple, the highest degree that any vertex can

be is n¡ 1.

Hence the degrees must be 0, 1, 2, ...., n¡ 1.

V1

V2

V3

V4

V5

V6

V1

V2

V3

V4

V5

V6

G

magentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 IB HL OPT

Discrete Mathematics

Y:\HAESE\IB_HL_OPT-DM\IB_HL_OPT-DM_an\233IB_HL_OPT-DM_an.cdr Friday, 21 February 2014 10:52:17 AM BRIAN



234 WORKED SOLUTIONS

However, this is a contradiction because if a simple graph has a

vertex with degree n¡1 then it must be connected, yet we also

have a vertex with degree 0.

) there are at most n¡ 1 different degrees.

Case 1: The n¡ 1 degrees are 0, 1, 2, 3, ...., n¡ 2

(a disconnected graph).

Case 2: The n¡ 1 degrees are 1, 2, 3, ...., n¡ 1

(a connected graph).

Since there are n vertices (pigeons) and at most n¡ 1 distinct

possible degrees (pigeonholes), by the PHP there exist 2 vertices

of the same degree.

28 a i Eulerian ii Hamiltonian

b i semi-Eulerian ii semi-Hamiltonian

c i neither ii Hamiltonian

d i Eulerian ii Hamiltonian

29 a G has v vertices and e edges.

G0 has v vertices and

³
v
2

´
¡ e edges.

) e =

³
v
2

´
¡ e

) 2e =
v(v ¡ 1)

2

) e =
v(v ¡ 1)

4

b From a, v(v ¡ 1) = 4e

) 4 j v(v ¡ 1)

But v and v¡1 are consecutive integers which cannot both

be even.
) 4 j v or 4 j v ¡ 1

) v = 4k or v ¡ 1 = 4k for some k 2 Z

) v ´ 0 (mod 4) or v ´ 1 (mod 4)

c From b, v = 4, 8, 12, 16, 20 or 1, 5, 9, 13, 17

v e

1 0
4 3
5 5
8 14
9 18

v e

12 33
13 39
16 60
17 68
20 95

d For v = 4, e = 3 fv = 1 and e = 0 is trivialg
G: and G0:

30 a For a tree, f = 1 and e = v ¡ 1

) v + f ¡ e = v + 1¡ (v ¡ 1)

= 2

b Consider a connected, planar graph is n vertices, fn faces,

and en edges.

Proof: (By the Principle of Mathematical Induction)

Pn is that “n+ fn ¡ en = 2” for n > 1.

(1) If n = 1, G is a single vertex ²
where v = 1, f = 1, e = 0
) v + f ¡ e = 2 X

) P1 is true.

(2) Assume that, for a graph with k vertices,

k + fk ¡ ek = 2.

Now consider adding a (k + 1)th vertex to the graph.

Suppose c of the existing vertices are joined to the new

vertex.

This increases the number of edges by c, and the number

of faces by c¡ 1 (adding 1 edge does not create a new

face, but each extra edge after that creates a new cycle,

and hence a new face).

) (k + 1) + fk+1 ¡ ek+1

= k + 1 + (fk + c¡ 1)¡ (ek + c)

= k + fk ¡ ek

= 2

Thus, by induction, Pn is true for all n 2 N .

31 a As each finite face is bordered by at least a 3-cycle, then each

finite face has degree > 3.

Each infinite face has degree > 3 also.

) every face has degree > 3

)
P

deg(F ) > 3f

) 2e > 3f

) 3f 6 2e

By Euler’s formula, v + f ¡ e = 2

) 3v + 3f ¡ 3e = 6

) 3e¡ 3v + 6 6 2e

) e 6 3v ¡ 6

b G and G0 both have 11 vertices.
For G, v = 11, eG = e

For G0, v = 11, eG0 =

³
11
2

´
¡ e

) eG0 = 55¡ e

If G is planar, e 6 3v ¡ 6 ffrom ag
) e 6 27 fv = 11g

) 55¡ e > 28

) eG0 > 28

) G0 is not planar.

32 Suppose G has order n. Together, G and G0 have the same

number of edges as Kn, that is

³
n
2

´
=

n(n ¡ 1)

2
.

However, if G and G0 are both trees, then they both must have

n¡ 1 edges.

Thus,
n(n ¡ 1)

2
= 2(n¡ 1)

) n(n¡ 1) = 4(n¡ 1)

) (n¡ 1)(n¡ 4) = 0

) n = 1 or 4

But n = 1 is not a particularly sensible solution.

So, G has order 4.

G G0

33 a The graph has two vertices with odd degree, B and C.

) while it it not Eulerian, it is semi-Eulerian.
) if we start and finish at B and C (either order), we can

walk around all tunnels without having to repeat any.
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WORKED SOLUTIONS 235

b B A E B C E D C

c i BC

ii The sum of the lengths of the tunnels

= 126 + 110 + 147 + 146 + 133 + 95 + 74 m

= 831 m

) minimum distance = 831 + 146

= 977 m
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acyclic graph
adjacency table
adjacent
axiom ,
base
bipartite graph
breadth first search
Carmichael number
Chinese Postman Problem
Chinese Remainder Theorem
circuit
closed form
closed walk
complement
complete bipartite graph ,
complete graph
composite number
congruence
connected graph ,
contrapositive
converse
coprime
counter example
cycle
cycle graph
degree of a face
degree of a vertex
degree sequence
deleted vertex algorithm
Dijkstra's algorithm
Diophantine equation
dividend
divides
divisibility
divisibility tests
division algorithm
divisor
edge
equivalence
Euclidean algorithm
Euclidean graph
Euclid's lemma
Euclid's lemma for primes
Eulerian circuit
Eulerian graph
Eulerian trail
Euler's formula
even vertex
face
Fermat's Little Theorem
Fibonacci sequence
first-degree recurrence relation
Fundamental Theorem of Arithemetic
graph
greatest common divisor
Hamiltonian cycle
Hamiltonian graph

117
97
91

11 160
46
92

120
84

128
75

101
16

101
92

92 94
92
10
66

92 103
158
156
49

151
101
93

110
91
91

137
125
58
43
41
42
79
43
43
91

156
55

133
53
62

102
102
102
113
91

110
82
15
23
63
91
49

106
106

INDEX
Hamiltonian path
Handshaking Lemma
homogeneous recurrence relation ,
implication
incident
incongruent ,
induction ,
inhomogeneous recurrence relation ,
integer
Kruskal's algorithm
least common multiple
length of a walk
linear congruence
linear recurrence relation
loop ,
multigraph
natural number
nearest neighbour algorithm
negation
node
NP problem
null graph
odd vertex ,
order axiom
order of a graph
path
Pigeonhole Principle
planar graph ,
platonic solids
polyhedron
positive integer
prime number , ,
proof by contradiction ,
quotient
recurrence relation ,
regular graph
relatively prime
remainder
residue classes modulo m
second-degree recurrence relation ,
semi-Eulerian graph
semi-Hamiltonian graph
sequence
simple graph
size of a graph
spanning tree
strong induction
subgraph
trail
Travelling Salesman Problem
traversable
tree
vertex
walk
weight of an edge
weighted graph
Well Ordered Principle ,
wheel graph

106
97

19 23
156
91

66 72
13 31
19 23

10
123
56

100
72
19

91 92
91
10

134
158
117
140
92

91 97
11
92

101
86

92 110
114
110
10

10 41 62
47 152

43
18 19

92
49
43
67

33 35
102
106
18
91
92

117
15
92

101
132
102
117
91

100
133
122

12 13
93

236 INDEX
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First edition - 2015 first reprint

ERRATA

MATHEMATICS FOR THE INTERNATIONAL STUDENT

MATHEMATICS HL (Option): Discrete Mathematics

page 52 SECTION D Example 23, should read:

The following erratum was made on 25/May/2016

Prove that
p
2 is irrational.

Proof: (By contradiction)

Suppose that
p
2 is rational.

)
p
2 =

p

q
where p, q 2 Z +, gcd(p, q) = 1

Example 23

We saw a different proof for 
the irrationality of ~`2 earlier.

Since gcd(p, q) = 1, there exist r, s 2 Z such that rp+ sq = 1

Hence,
p
2 =

p
2(rp+ sq) = (

p
2p)r + (

p
2q)s

)
p
2 = (

p
2
p
2q)r + (

p
2

p
p
2
)s fusing

p
2 =

p

q
g

)
p
2 = 2qr + ps

)
p
2 is an integer fsince p, q 2 Z +, and r, s 2 Z g

This is a contradiction, so
p
2 must be irrational.

10 The graph G is r-regular.

)
P

deg(Vi) = number of vertices £ r

= pr

But
P

deg(Vi) = 2£ number of edges

= 2q

) 2q = pr

) q =
pr

2

page 207 ANSWERS EXERCISE 2A Question , should read:10

The following erratum was made on 10/Jun/2016


	Mathematics HL Option: Discrete Mathematics
	Foreword
	Acknowledgements
	Using the interactive CD
	Table of contents
	Symbols and notation
	1. Number theory
	Opening problems
	A - Mathematical induction
	Exercise 1A.1
	Answers

	Exercise 1A.2
	Answers


	B - Recurrence relations
	Exercise 1B.1
	Answers

	Exercise 1B.2
	Answers

	Investigation 1 - The tower of hanoi
	Investigation 2 - Lines and regions
	Investigation 3 - Intersecting circles
	Exercise 1B.3
	Answers

	Exercise 1B.4
	Answers


	C - Divisibility, prime numbers, and the division algorithm
	Investigation 4 - How many primes are there?
	Exercise 1C.1
	Answers

	Exercise 1C.2
	Answers

	Exercise 1C.3
	Answers

	Exercise 1C.4
	Answers


	D - Gcd, lcm, and the euclidean algorithm
	Exercise 1D.1
	Answers

	Investigation 5 - Connecting gcd and lcm
	Exercise 1D.2
	Answers

	Exercise 1D.3
	Answers


	E - Prime numbers
	Exercise 1E
	Answers

	Research

	F - Congruences
	Investigation 6 - Modular algebra
	Exercise 1F.1
	Answers

	Exercise 1F.2
	Answers


	G - The chinese remainder theorem
	Exercise 1G
	Answers


	H - Divisibility tests
	Exercise 1H
	Answers


	I - Fermats little theorem
	Historical note
	Exercise 1I
	Answers


	J - The pigeonhole principle (dirichlets principle)
	Exercise 1J
	Answers



	2. Graph theory
	Opening problems
	A - Terminology
	Exercise 2A
	Answers


	B - Fundamental results of graph theory
	Exercise 2B
	Answers


	C - Journeys on graphs
	Investigation 1 - The bridges of konigsberg
	Exercise 2C.1
	Answers

	Exercise 2C.2
	Answers

	Exercise 2C.3
	Answers


	D - Planar graphs
	Exercise 2D.1
	Answers

	Investigation 2 - Eulers formula
	Exercise 2D.2
	Answers

	Investigation 3 - Platonic solids
	Investigation 4 - Soccer balls
	Extension

	E - Trees and algorithms
	Exercise 2E.1
	Answers

	Exercise 2E.2
	Answers

	Exercise 2E.3
	Answers

	Exercise 2E.4
	Answers


	F - The chinese postman problem (cpp)
	Exercise 2F
	Answers


	G - The travelling salesman problem (tsp)
	Exercise 2G
	Answers

	Theory of knowledge - Np problems

	Review set A
	Answers

	Review set B
	Answers

	Review set C
	Answers

	Exercise 
	Exercise 
	Theory of knowledge - Axioms and occams razor

	Answers
	Index
	Mathematics - Mathematics HL (Option) - Discrete Mathematics - First Edition - ERRATA.pdf
	Page 1

	Blank Page


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




